{"title":"The simulation of two-dimensional plane problems using ordinary state-based peridynamics","authors":"Jingjing Zhao, Guangda Lu, Qing Zhang, W. Du","doi":"10.1515/ijnsns-2021-0320","DOIUrl":null,"url":null,"abstract":"Abstract The ordinary state-based peridynamics (OSB PD) model is an integral nonlocal continuum mechanics model. And the three-dimensional OSB PD model can deal with linear elastic solid problems well. But for plane problems, the calculation results of existing models have large deviations. In this paper, a set of OSB PD models for plane problems is established by theoretical derivation. First, through the strain energy density function equivalence of peridynamics and classical continuum mechanics, the equivalent coefficients of the plane strain and plane stress problems of OSB PD are deduced. Then, consider the cantilever beam deformation simulation under concentrated load. The simulation results show that the maximum displacements are in good agreement with the corresponding analytical solutions in all directions. Finally, in the simulation of the slab with a hole, the two cases of uniform displacement and uniform load are considered, respectively. The simulation results are consistent with the ANSYS analysis results, and the deviation is small, which verifies the validity of the model.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0320","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The ordinary state-based peridynamics (OSB PD) model is an integral nonlocal continuum mechanics model. And the three-dimensional OSB PD model can deal with linear elastic solid problems well. But for plane problems, the calculation results of existing models have large deviations. In this paper, a set of OSB PD models for plane problems is established by theoretical derivation. First, through the strain energy density function equivalence of peridynamics and classical continuum mechanics, the equivalent coefficients of the plane strain and plane stress problems of OSB PD are deduced. Then, consider the cantilever beam deformation simulation under concentrated load. The simulation results show that the maximum displacements are in good agreement with the corresponding analytical solutions in all directions. Finally, in the simulation of the slab with a hole, the two cases of uniform displacement and uniform load are considered, respectively. The simulation results are consistent with the ANSYS analysis results, and the deviation is small, which verifies the validity of the model.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.