Discharge of a Triangular Orifice under Free Flow Conditions

A. Sosnowska
{"title":"Discharge of a Triangular Orifice under Free Flow Conditions","authors":"A. Sosnowska","doi":"10.1515/heem-2021-0002","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, flow through a free triangular orifice is considered. The comparison of two formulas was conducted for discharge calculations: a large orifice formula and a small orifice formula. The results show that, above a certain value of upstream head to orifice height ratio there is no need for small-large formula discrimination. The differences in the outcomes for the two formulas are negligible for upstream head to orifice height ratios greater than 3. This means that a small orifice formula can be used instead of a large orifice formula. Calculations were performed for different variants of triangle orientation (with tip downwards, sidewards and upwards) as well as for different dimensions of orifice (equilateral and isosceles). The calculations also included different submergence levels of the upper edge of the orifice and variable dimensions of the orifice with constant upstream head. Neither of these conditions affect the relative deviation values for small and large orifice formulas.","PeriodicalId":53658,"journal":{"name":"Archives of Hydroengineering and Environmental Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Hydroengineering and Environmental Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/heem-2021-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, flow through a free triangular orifice is considered. The comparison of two formulas was conducted for discharge calculations: a large orifice formula and a small orifice formula. The results show that, above a certain value of upstream head to orifice height ratio there is no need for small-large formula discrimination. The differences in the outcomes for the two formulas are negligible for upstream head to orifice height ratios greater than 3. This means that a small orifice formula can be used instead of a large orifice formula. Calculations were performed for different variants of triangle orientation (with tip downwards, sidewards and upwards) as well as for different dimensions of orifice (equilateral and isosceles). The calculations also included different submergence levels of the upper edge of the orifice and variable dimensions of the orifice with constant upstream head. Neither of these conditions affect the relative deviation values for small and large orifice formulas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自由流条件下三角形孔板的流量
摘要本文考虑了自由三角形孔口的流动问题。对两个流量计算公式进行了比较:一个大孔口公式和一个小孔口公式。结果表明,上游水头与孔口高度比在一定值以上时,不需要对大小公式进行判别。当上游水头与孔口高度比大于3时,两个公式的结果差异可以忽略不计。这意味着可以使用小孔公式来代替大孔公式。对三角形方向的不同变体(尖端向下、侧向和向上)以及不同尺寸的孔口(等边和等腰)进行了计算。计算还包括孔口上边缘的不同淹没水平和具有恒定上游水头的孔口的可变尺寸。这两种情况都不会影响小孔和大孔公式的相对偏差值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Hydroengineering and Environmental Mechanics
Archives of Hydroengineering and Environmental Mechanics Environmental Science-Water Science and Technology
CiteScore
1.30
自引率
0.00%
发文量
4
期刊介绍: Archives of Hydro-Engineering and Environmental Mechanics cover the broad area of disciplines related to hydro-engineering, including: hydrodynamics and hydraulics of inlands and sea waters, hydrology, hydroelasticity, ground-water hydraulics, water contamination, coastal engineering, geotechnical engineering, geomechanics, structural mechanics, etc. The main objective of Archives of Hydro-Engineering and Environmental Mechanics is to provide an up-to-date reference to the engineers and scientists engaged in the applications of mechanics to the analysis of various phenomena appearing in the natural environment.
期刊最新文献
Simulation of Pipe Networks Using EPANET to Optimize Water Supply: A Case Study for Arjawinangun Area, Indonesia Experimental Determination of the Relationship between Soil Structure Parameters and Indicators of Water Saturation and Filtration Seismic analysis of Fractured Koyna Concrete Gravity Dam Numerical Analysis of Turbulent Flow over a Backward-facing Step in an Open Channel On the Hydraulic Characteristics of Submerged Flow over Trapezoidal-Shaped Weirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1