Influence of nano additives on performance and emissions characteristics of a diesel engine fueled with watermelon methyl ester

IF 1.1 Q3 Engineering Journal of Thermal Engineering Pub Date : 2023-04-19 DOI:10.18186/thermal.1285915
Arunprasad Prasad, Rajkumar Sivanraju, Aklilu Teklemariam, Dawit Tafesse, Mebratu Tufa, Bovas Herbert Bejaxhin
{"title":"Influence of nano additives on performance and emissions characteristics of a diesel engine fueled with watermelon methyl ester","authors":"Arunprasad Prasad, Rajkumar Sivanraju, Aklilu Teklemariam, Dawit Tafesse, Mebratu Tufa, Bovas Herbert Bejaxhin","doi":"10.18186/thermal.1285915","DOIUrl":null,"url":null,"abstract":"Significant population and automobile expansion have resulted in a rapid rise in energy demand. Because of the high demand for energy and the rapid depletion of fossil fuels, experts are concentrating their efforts on developing a suitable alternative fuel for diesel. The performance and emission characteristics of biodiesel made from watermelon methyl ester were investigated using a lanthanum oxide (La2O3) nanoparticle addition. Through the transesterification meth od, biodiesel was produced from non-edible watermelon seed oil. Compared to B20, addition of 100 parts per million (ppm) of La2O3 nanoparticles to biodiesel emulsion fuel reduces CO and HC emissions by 4.75% and 6.67%, respectively. Compared to B20 at full load circumstances, the inclusion of La2O3 nanoparticles at 100 ppm enhances the brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) by 2% and 8.8%, respectively.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1285915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Significant population and automobile expansion have resulted in a rapid rise in energy demand. Because of the high demand for energy and the rapid depletion of fossil fuels, experts are concentrating their efforts on developing a suitable alternative fuel for diesel. The performance and emission characteristics of biodiesel made from watermelon methyl ester were investigated using a lanthanum oxide (La2O3) nanoparticle addition. Through the transesterification meth od, biodiesel was produced from non-edible watermelon seed oil. Compared to B20, addition of 100 parts per million (ppm) of La2O3 nanoparticles to biodiesel emulsion fuel reduces CO and HC emissions by 4.75% and 6.67%, respectively. Compared to B20 at full load circumstances, the inclusion of La2O3 nanoparticles at 100 ppm enhances the brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) by 2% and 8.8%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米添加剂对西瓜甲酯柴油发动机性能和排放特性的影响
大量的人口和汽车的扩张导致了能源需求的快速增长。由于对能源的高需求和化石燃料的迅速消耗,专家们正集中精力开发一种合适的替代柴油的燃料。采用纳米氧化镧(La2O3)对西瓜甲酯制备生物柴油的性能和排放特性进行了研究。以非食用西瓜籽油为原料,采用酯交换法制备生物柴油。与B20相比,在生物柴油乳液燃料中添加百万分之一百(ppm)的La2O3纳米颗粒,CO和HC的排放量分别减少4.75%和6.67%。与满载情况下的B20相比,添加100 ppm的La2O3纳米颗粒可使制动热效率(BTE)和制动比油耗(BSFC)分别提高2%和8.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
期刊最新文献
Experimental investigation of double-glazed double-pass solar airheater (DG-DPSAH) with multi-v ribs having trapezoidal roughness geometry Experimental evaluation of the effect of leakage in scroll compressor Performance enhancement of stepped solar still coupled with evacuated tube collector An experimental investigation to study the performance characteristics of heat pipe using aqueous hybrid nanofluids Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1