Joint modeling of two count variables using a shared random effect model in the presence of clusters for complex data

M. Sooriyarachchi
{"title":"Joint modeling of two count variables using a shared random effect model in the presence of clusters for complex data","authors":"M. Sooriyarachchi","doi":"10.1080/24709360.2021.1948381","DOIUrl":null,"url":null,"abstract":"In epidemiology, it is often the case that two or more correlated count response variables are encountered. Under this scenario, it is more efficient to model the data using a joint model. Besides, if one of these count variables has an excess of zeros (spike at zero) the log link cannot be used in general. The situation is more complicated when the data is grouped into clusters. A Generalized Linear Mixed Model (GLMM) is used to accommodate this cluster covariance. The objective of this research is to develop a new modeling approach that can handle this situation. The method is illustrated on a global data set of Covid 19 patients. The important conclusions are that the new model was successfully implemented both in theory and practice. A plot of the residuals indicated a well-fitting model to the data.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"6 1","pages":"16 - 30"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2021.1948381","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2021.1948381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

Abstract

In epidemiology, it is often the case that two or more correlated count response variables are encountered. Under this scenario, it is more efficient to model the data using a joint model. Besides, if one of these count variables has an excess of zeros (spike at zero) the log link cannot be used in general. The situation is more complicated when the data is grouped into clusters. A Generalized Linear Mixed Model (GLMM) is used to accommodate this cluster covariance. The objective of this research is to develop a new modeling approach that can handle this situation. The method is illustrated on a global data set of Covid 19 patients. The important conclusions are that the new model was successfully implemented both in theory and practice. A plot of the residuals indicated a well-fitting model to the data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在复杂数据存在聚类的情况下,使用共享随机效应模型对两个计数变量进行联合建模
在流行病学中,通常会遇到两个或多个相关的计数反应变量。在这种情况下,使用联合模型对数据进行建模更有效。此外,如果这些计数变量中的一个超过了零(峰值为零),则通常不能使用日志链接。当数据被分组到集群中时,情况会更加复杂。使用广义线性混合模型(GLMM)来适应这种聚类协方差。本研究的目的是开发一种能够处理这种情况的新建模方法。该方法在新冠肺炎19名患者的全球数据集中进行了说明。重要的结论是,新模式在理论和实践上都得到了成功的实施。残差图表明模型与数据拟合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
期刊最新文献
Adjusting for bias due to measurement error in functional quantile regression models with error-prone functional and scalar covariates. The analysis of Salmonella’s ability to survive in different external environments Notice of duplicate publication: public transportation network scan for rapid surveillance Global Odds Model with Proportional Odds and Trend Odds Applied to Gross and Microscopic Brain Infarcts. Flexible and robust procedure for subgroup inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1