Experimental assessment of tio2-poe nanolubricant stability and optimization process using one factor at a time (OFAT) based on response surface methodology
Agus Nugroho, R. Mamat, Zhang BO1, Wan HAMZAH AZMI, T. Yusaf, F. Khoerunnisa
{"title":"Experimental assessment of tio2-poe nanolubricant stability and optimization process using one factor at a time (OFAT) based on response surface methodology","authors":"Agus Nugroho, R. Mamat, Zhang BO1, Wan HAMZAH AZMI, T. Yusaf, F. Khoerunnisa","doi":"10.18186/thermal.1285208","DOIUrl":null,"url":null,"abstract":"This paper aims to elaborate on the results of the experimental assessment of the stability of TiO2-Polyester (POE) nanolubricant. There are six samples in this investigation, with each concentration of 0.02 vol%. The TiO2 nanoparticles were dispersed into synthetic lubricant POE for 30 min using a magnetic stirrer. Then, the samples were sonicated for 0, 40, 60, 80, 100, and 120 min, respectively—the visual observation for 720 hours, UV visible spectrophotometry, and absolute zeta potential employed to investigate the samples. After data acquisition, optimization with one factor at a time (OFAT) is applied to determine the most optimum sample. The results show that the sample with sonication treatment for 120 min is the most optimum. This finding was confirmed by the absorbance ratio value of 0.95 with an -80.48mV zeta potential. The output of ANOVA analysis shows the regression coefficient is 0.9999, and the adjusted R2 value is 0.9998 with a p-value that is much smaller than 0.05, which is","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1285208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aims to elaborate on the results of the experimental assessment of the stability of TiO2-Polyester (POE) nanolubricant. There are six samples in this investigation, with each concentration of 0.02 vol%. The TiO2 nanoparticles were dispersed into synthetic lubricant POE for 30 min using a magnetic stirrer. Then, the samples were sonicated for 0, 40, 60, 80, 100, and 120 min, respectively—the visual observation for 720 hours, UV visible spectrophotometry, and absolute zeta potential employed to investigate the samples. After data acquisition, optimization with one factor at a time (OFAT) is applied to determine the most optimum sample. The results show that the sample with sonication treatment for 120 min is the most optimum. This finding was confirmed by the absorbance ratio value of 0.95 with an -80.48mV zeta potential. The output of ANOVA analysis shows the regression coefficient is 0.9999, and the adjusted R2 value is 0.9998 with a p-value that is much smaller than 0.05, which is
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.