Chirped optical solitons in fiber Bragg gratings with polynomial law of nonlinear refractive index

IF 1.9 4区 物理与天体物理 Q3 OPTICS Journal of the European Optical Society-Rapid Publications Pub Date : 2023-05-10 DOI:10.1051/jeos/2023025
K. Al-Ghafri, M. Sankar, E. Krishnan, Salam Khan, A. Biswas
{"title":"Chirped optical solitons in fiber Bragg gratings with polynomial law of nonlinear refractive index","authors":"K. Al-Ghafri, M. Sankar, E. Krishnan, Salam Khan, A. Biswas","doi":"10.1051/jeos/2023025","DOIUrl":null,"url":null,"abstract":"The objective of the present study is to examine the behaviors of chirped optical solitons in fiber Bragg gratings (BGs) with dispersive reflectivity. The form of nonlinear refractive index represents polynomial law nonlinearity. By virtue of phase-matching condition, the discussed model of coupled nonlinear Schrödinger equation is reduced to an integrable form. Consequently, chirped optical solitons having various profiles such as W-shaped, bright, dark, kink and anti-kink solitons are derived. Further to this, the chirp associated with these soliton structures are extracted. The impact of dispersive reflectivity, self-phase modulation and cross-phase modulation on the pulse propagation is investigated and it is induced that the changes of self-phase modulation and cross-phase modulation cause a marked rise in soliton amplitude which is subject to minor variations by dispersive reflectivity. The physical evolutions of chirped optical solitons are described along with the corresponding chirp to pave the way for possible applications in the field of fiber BGs.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2023025","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of the present study is to examine the behaviors of chirped optical solitons in fiber Bragg gratings (BGs) with dispersive reflectivity. The form of nonlinear refractive index represents polynomial law nonlinearity. By virtue of phase-matching condition, the discussed model of coupled nonlinear Schrödinger equation is reduced to an integrable form. Consequently, chirped optical solitons having various profiles such as W-shaped, bright, dark, kink and anti-kink solitons are derived. Further to this, the chirp associated with these soliton structures are extracted. The impact of dispersive reflectivity, self-phase modulation and cross-phase modulation on the pulse propagation is investigated and it is induced that the changes of self-phase modulation and cross-phase modulation cause a marked rise in soliton amplitude which is subject to minor variations by dispersive reflectivity. The physical evolutions of chirped optical solitons are described along with the corresponding chirp to pave the way for possible applications in the field of fiber BGs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性折射率多项式定律下光纤布拉格光栅中的啁啾光孤子
本研究的目的是研究具有色散反射率的光纤布拉格光栅中啁啾光孤子的行为。非线性折射率的形式代表多项式定律的非线性。利用相位匹配条件,将所讨论的耦合非线性Schrödinger方程模型简化为可积形式,从而导出了具有W形、亮、暗、扭结和反扭结等不同轮廓的啁啾光孤子。除此之外,还提取了与这些孤子结构相关联的啁啾。研究了色散反射率、自相位调制和交叉相位调制对脉冲传播的影响,发现自相位调制、交叉相位调制的变化导致孤子振幅显著上升,而色散反射率的变化很小。描述了啁啾光孤子的物理演化以及相应的啁啾,为光纤BG领域的可能应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
期刊最新文献
Estimating the Absorption and Waveguiding in Porous Slabs from Multi-modal Measurements Towards a portable setup for the on-site SERS detection of miRNAs Orbital Angular Momentum Multiplexing Architecture for OAM/SDM Passive Optical Networks Analysis of the recording of Fibonacci lenses on photopolymers with 3-D diffusion model A method of fluorescence molecular tomographic reconstruction via the second-order sensitivity matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1