On unbiasedness and biasedness of the Wilcoxon and some nonparametric tests

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2022-09-23 DOI:10.1002/wics.1600
H. Murakami, Seong-Keon Lee
{"title":"On unbiasedness and biasedness of the Wilcoxon and some nonparametric tests","authors":"H. Murakami, Seong-Keon Lee","doi":"10.1002/wics.1600","DOIUrl":null,"url":null,"abstract":"In several fields of applications, the underlying theoretical distribution is unknown and cannot be assumed to have a specific parametric distribution such as a normal distribution. Nonparametric statistical methods are preferable in these cases. Nonparametric testing hypotheses have been one of the primarily used statistical procedures for nearly a century, and the power of the test is an important property in nonparametric testing procedures. This review discusses the unbiasedness of nonparametric tests. In nonparametric hypothesis, the best‐known Wilcoxon–Mann–Whitney (WMW) test has both robustness and power performance. Therefore, the WMW test is widely used to determine the location parameter. In this review, the unbiasedness and biasedness of the WMW test for the location parameter family of the distribution is mainly investigated. An overview of historical developments, detailed discussions, and works on the unbiasedness/biasedness of several nonparametric tests are presented with references to numerous studies. Finally, we conclude this review with a discussion on the unbiasedness/biasedness of nonparametric test procedures. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Nonparametric Methods.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1600","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In several fields of applications, the underlying theoretical distribution is unknown and cannot be assumed to have a specific parametric distribution such as a normal distribution. Nonparametric statistical methods are preferable in these cases. Nonparametric testing hypotheses have been one of the primarily used statistical procedures for nearly a century, and the power of the test is an important property in nonparametric testing procedures. This review discusses the unbiasedness of nonparametric tests. In nonparametric hypothesis, the best‐known Wilcoxon–Mann–Whitney (WMW) test has both robustness and power performance. Therefore, the WMW test is widely used to determine the location parameter. In this review, the unbiasedness and biasedness of the WMW test for the location parameter family of the distribution is mainly investigated. An overview of historical developments, detailed discussions, and works on the unbiasedness/biasedness of several nonparametric tests are presented with references to numerous studies. Finally, we conclude this review with a discussion on the unbiasedness/biasedness of nonparametric test procedures. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Nonparametric Methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于Wilcoxon的无偏性和偏性及一些非参数检验
在几个应用领域中,潜在的理论分布是未知的,不能假设具有特定的参数分布,如正态分布。在这些情况下,非参数统计方法更可取。近一个世纪以来,非参数检验假设一直是主要使用的统计程序之一,而检验的幂是非参数检验程序的一个重要性质。本文讨论了非参数检验的无偏性。在非参数假设中,最著名的Wilcoxon–Mann–Whitney(WMW)检验具有稳健性和幂性能。因此,WMW测试被广泛用于确定位置参数。本文主要研究了分布的位置参数族的WMW检验的无偏性和偏性。参考大量研究,概述了几种非参数检验的无偏性/偏倚性的历史发展、详细讨论和工作。最后,我们讨论了非参数检验过程的无偏性/偏倚性,从而结束了这篇综述。本文分类为:数据分析的统计和图形方法>非参数方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1