{"title":"Determining the effectiveness of practicing non-pharmaceutical interventions in improving virus control in a pandemic using agent-based modelling","authors":"C. A. Buhat, S. Villanueva","doi":"10.5206/mase/10876","DOIUrl":null,"url":null,"abstract":"In order to determine the effectiveness of non-pharmaceutical interventions on an epidemic, we develop an agent-based model that simulates the spread of an infectious disease in a small community and its emerging phenomena. We vary parameters such as initial population, initial infected, infection rate, recovery rate, death rate, and asymptomatic rates, as inputs. Our simulations show that (i) random mass testing decreases the number of deaths, infections and time duration; (ii) as well as quarantines; (iii) social distancing lengthen outbreak period to an extent and helps flatten the epidemic curve; and (iv) the most effective combination of NPIs to minimize death, infection and duration is no mass testing, no social distancing and a total lockdown. Results of this study can aid decision makers in their policies to be implemented to have an optimal output.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/10876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4
Abstract
In order to determine the effectiveness of non-pharmaceutical interventions on an epidemic, we develop an agent-based model that simulates the spread of an infectious disease in a small community and its emerging phenomena. We vary parameters such as initial population, initial infected, infection rate, recovery rate, death rate, and asymptomatic rates, as inputs. Our simulations show that (i) random mass testing decreases the number of deaths, infections and time duration; (ii) as well as quarantines; (iii) social distancing lengthen outbreak period to an extent and helps flatten the epidemic curve; and (iv) the most effective combination of NPIs to minimize death, infection and duration is no mass testing, no social distancing and a total lockdown. Results of this study can aid decision makers in their policies to be implemented to have an optimal output.