Suripeddi Suripeddi Srinivas, Challa Kalyan Kumar, A. S. Reddy
{"title":"Dufour and Soret effects on pulsatile hydromagnetic flow of Casson fluid in a vertical non-Darcian porous space","authors":"Suripeddi Suripeddi Srinivas, Challa Kalyan Kumar, A. S. Reddy","doi":"10.15388/namc.2022.27.26678","DOIUrl":null,"url":null,"abstract":"This article aims to inspect the pulsating hydromagnetic slip flow of Casson fluid in a vertical porous channel with heat and mass transfer. The fluid is injected into the channel from the left wall and removed at the opposite wall with the same velocity. The impact of non-Darcy, Soret, and Dufour effects are taken under consideration. The governing partial differential equations (PDEs) are converted to ordinary differential equations (ODEs) using perturbation method and solved by utilizing 4th-order Runge–Kutta (R–K) technique together with shooting method. The impact of dissimilar parameters on flow, heat and mass transfer characteristics are displayed and discussed.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.26678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
This article aims to inspect the pulsating hydromagnetic slip flow of Casson fluid in a vertical porous channel with heat and mass transfer. The fluid is injected into the channel from the left wall and removed at the opposite wall with the same velocity. The impact of non-Darcy, Soret, and Dufour effects are taken under consideration. The governing partial differential equations (PDEs) are converted to ordinary differential equations (ODEs) using perturbation method and solved by utilizing 4th-order Runge–Kutta (R–K) technique together with shooting method. The impact of dissimilar parameters on flow, heat and mass transfer characteristics are displayed and discussed.