Machine Learning MOSA Monitoring System

Q3 Engineering Instrumentation Mesure Metrologie Pub Date : 2021-08-31 DOI:10.18280/i2m.200404
A. Manjunath, Sabahudin Vrtagic, F. Doğan, Milan Dordevic, M. Žarković, Jasmin Kevric, Goran Dobrić
{"title":"Machine Learning MOSA Monitoring System","authors":"A. Manjunath, Sabahudin Vrtagic, F. Doğan, Milan Dordevic, M. Žarković, Jasmin Kevric, Goran Dobrić","doi":"10.18280/i2m.200404","DOIUrl":null,"url":null,"abstract":"This research paper deals with the problem of Metal-Oxide Surge Arrester (MOSA) condition monitoring and a new methodology in surge arrester monitoring and diagnostics is presented. A machine learning algorithm (back propagation regression) is used to estimate the non-linearity coefficient of the surge arrester, based on operating voltage and leakage current of the arrester. Using a simulated system, this research investigates the possibility of application and efficiency of machine learning. It is shown that the applied learning algorithm results are competitive with the model results parameters calculated as R2 = 0.999 and mean absolute real error computed as 0.005 which has shown that the proposed model can be used for MOSA monitoring and diagnostic purposes.","PeriodicalId":38637,"journal":{"name":"Instrumentation Mesure Metrologie","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instrumentation Mesure Metrologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/i2m.200404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This research paper deals with the problem of Metal-Oxide Surge Arrester (MOSA) condition monitoring and a new methodology in surge arrester monitoring and diagnostics is presented. A machine learning algorithm (back propagation regression) is used to estimate the non-linearity coefficient of the surge arrester, based on operating voltage and leakage current of the arrester. Using a simulated system, this research investigates the possibility of application and efficiency of machine learning. It is shown that the applied learning algorithm results are competitive with the model results parameters calculated as R2 = 0.999 and mean absolute real error computed as 0.005 which has shown that the proposed model can be used for MOSA monitoring and diagnostic purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习MOSA监控系统
本文研究了金属氧化物避雷器(MOSA)状态监测问题,提出了一种新的避雷器监测和诊断方法。基于避雷器的工作电压和漏电流,采用机器学习算法(反向传播回归)估计避雷器的非线性系数。本研究利用一个模拟系统,探讨了机器学习应用的可能性和效率。结果表明,应用的学习算法结果与模型结果参数R2 = 0.999和平均绝对真实误差0.005相比较,表明所提出的模型可以用于MOSA的监测和诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Instrumentation Mesure Metrologie
Instrumentation Mesure Metrologie Engineering-Engineering (miscellaneous)
CiteScore
1.70
自引率
0.00%
发文量
25
期刊最新文献
A Device for Measuring the Electrical Conductivity of Liquids Using Phase Sensitive Detection Technique Design and Evaluation of a Spider Web-Like Single-Axis Micro-Electro-Mechanical Systems Accelerometer with High Sensitivity and Fast Response Investigating Fluid Flow Regimes: A Novel Design and Implementation of Bernoulli’s Apparatus Metrological Characterization of Spring Impact Hammer Calibration Advanced Sensor-Based Cap Cooling System for Mitigating Chemotherapy-Induced Hair Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1