Practical Application of Mesh Opportunistic Networks

IF 3.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied System Innovation Pub Date : 2023-06-16 DOI:10.3390/asi6030060
M. Martín-Pascual, Celia Andreu-Sánchez
{"title":"Practical Application of Mesh Opportunistic Networks","authors":"M. Martín-Pascual, Celia Andreu-Sánchez","doi":"10.3390/asi6030060","DOIUrl":null,"url":null,"abstract":"Opportunistic networks allow for communication between nearby mobile devices through a radio connection, avoiding the need for cellular data coverage or a Wi-Fi connection. The limited spatial range of this type of communication can be overcome by using nodes in a mesh network. The purpose of this research was to examine a commercial application of electronic mesh communication without a mobile data plan, Wi-Fi, or satellite. A mixed study, with qualitative and quantitative strategies, was designed. An experimental session, in which participants tested opportunistic networks developing different tasks for performance, was carried out to examine the system. Different complementary approaches were adopted: a survey, a focus group, and an analysis of participants’ performance. We found that the main advantage of this type of communication is the lack of a need to use data networks for one-to-one and group communications. Opportunistic networks can be integrated into professional communication workflows. They can be used in situations where traditional telephones and the Internet are compromised, such as at mass events, emergency situations, or in the presence of frequency inhibitors.","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi6030060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Opportunistic networks allow for communication between nearby mobile devices through a radio connection, avoiding the need for cellular data coverage or a Wi-Fi connection. The limited spatial range of this type of communication can be overcome by using nodes in a mesh network. The purpose of this research was to examine a commercial application of electronic mesh communication without a mobile data plan, Wi-Fi, or satellite. A mixed study, with qualitative and quantitative strategies, was designed. An experimental session, in which participants tested opportunistic networks developing different tasks for performance, was carried out to examine the system. Different complementary approaches were adopted: a survey, a focus group, and an analysis of participants’ performance. We found that the main advantage of this type of communication is the lack of a need to use data networks for one-to-one and group communications. Opportunistic networks can be integrated into professional communication workflows. They can be used in situations where traditional telephones and the Internet are compromised, such as at mass events, emergency situations, or in the presence of frequency inhibitors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网状机会网络的实际应用
机会网络允许附近移动设备之间通过无线电连接进行通信,从而避免了对蜂窝数据覆盖或Wi-Fi连接的需要。这种类型的通信的有限空间范围可以通过使用网状网络中的节点来克服。这项研究的目的是检验在没有移动数据计划、Wi-Fi或卫星的情况下电子网状通信的商业应用。设计了一项具有定性和定量策略的混合研究。进行了一次实验会议,参与者测试了开发不同任务的机会网络的性能,以检查该系统。采取了不同的互补方法:调查、焦点小组和对参与者表现的分析。我们发现,这种类型的通信的主要优势是不需要使用数据网络进行一对一和群组通信。机会网络可以集成到专业沟通工作流程中。它们可以用于传统电话和互联网受到威胁的情况,例如在大规模活动、紧急情况下,或在存在频率抑制剂的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied System Innovation
Applied System Innovation Mathematics-Applied Mathematics
CiteScore
7.90
自引率
5.30%
发文量
102
审稿时长
11 weeks
期刊最新文献
Research on Chinese Nested Entity Recognition Based on IDCNNLR and GlobalPointer AI-Powered Academic Guidance and Counseling System Based on Student Profile and Interests Using Smart Traffic Lights to Reduce CO2 Emissions and Improve Traffic Flow at Intersections: Simulation of an Intersection in a Small Portuguese City Predictive Modeling of Light–Matter Interaction in One Dimension: A Dynamic Deep Learning Approach Project Management Efficiency Measurement with Data Envelopment Analysis: A Case in a Petrochemical Company
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1