K. Chalkias, Shir Cohen, Kevin Lewi, Fredric Moezinia, Yolan Romailler
{"title":"HashWires: Hyperefficient Credential-Based Range Proofs","authors":"K. Chalkias, Shir Cohen, Kevin Lewi, Fredric Moezinia, Yolan Romailler","doi":"10.2478/popets-2021-0061","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents HashWires, a hash-based range proof protocol that is applicable in settings for which there is a trusted third party (typically a credential issuer) that can generate commitments. We refer to these as “credential-based” range proofs (CBRPs). HashWires improves upon hashchain solutions that are typically restricted to micro-payments for small interval ranges, achieving an exponential speedup in proof generation and verification time. Under reasonable assumptions and performance considerations, a Hash-Wires proof can be as small as 305 bytes for 64-bit integers. Although CBRPs are not zero-knowledge and are inherently less flexible than general zero-knowledge range proofs, we provide a number of applications in which a credential issuer can leverage HashWires to provide range proofs for private values, without having to rely on heavyweight cryptographic tools and assumptions.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2021 1","pages":"76 - 95"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2021-0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract This paper presents HashWires, a hash-based range proof protocol that is applicable in settings for which there is a trusted third party (typically a credential issuer) that can generate commitments. We refer to these as “credential-based” range proofs (CBRPs). HashWires improves upon hashchain solutions that are typically restricted to micro-payments for small interval ranges, achieving an exponential speedup in proof generation and verification time. Under reasonable assumptions and performance considerations, a Hash-Wires proof can be as small as 305 bytes for 64-bit integers. Although CBRPs are not zero-knowledge and are inherently less flexible than general zero-knowledge range proofs, we provide a number of applications in which a credential issuer can leverage HashWires to provide range proofs for private values, without having to rely on heavyweight cryptographic tools and assumptions.