Identifying Monomeric Fe Species for Efficient Direct Methane Oxidation to C1 Oxygenates with H2O2 over Fe/MOR Catalysts

Methane Pub Date : 2022-05-01 DOI:10.3390/methane1020010
Caiyun Xu, Qian Song, Naǧme Merdanoǧlu, Hang Liu, E. Klemm
{"title":"Identifying Monomeric Fe Species for Efficient Direct Methane Oxidation to C1 Oxygenates with H2O2 over Fe/MOR Catalysts","authors":"Caiyun Xu, Qian Song, Naǧme Merdanoǧlu, Hang Liu, E. Klemm","doi":"10.3390/methane1020010","DOIUrl":null,"url":null,"abstract":"Exploring advanced catalysts and reaction systems operated at mild reaction conditions is crucial for conducting the direct methane oxidation reaction toward oxygenate products. Many efforts have been put into research on pentasil−type (MFI) zeolites based on mononuclear and/or binuclear iron sites, using H2O2 as the oxidant. In this work, we present a modified liquid ion−exchange method to better control Fe loading in a mordenite−type (MOR) zeolite with a Si/Al molar ratio of 9. The optimized Fe/MOR catalyst showed excellent performance in the direct methane oxidation reaction with turnover frequencies (TOFs) of 555 h−1 to C1 oxygenates, significantly better than the reported activity. Multiple comparative experiments were conducted to reveal the mechanism behind the performance. Strikingly, the active sites in the Fe/MOR catalyst were found to be mononuclear iron sites, confirmed by transmission electron microscopy (TEM), ultraviolet−visible diffuse reflectance spectroscopy (UV−vis DRS), and X-ray absorption spectroscopy (XAS). Increasing the iron loading led to the aggregation of the iron sites, which tend to trigger undesirable side reactions (i.e., H2O2 decomposition and over−oxidation), resulting in a significant decrease in TOFs to C1 oxygenates.","PeriodicalId":74177,"journal":{"name":"Methane","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methane","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/methane1020010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Exploring advanced catalysts and reaction systems operated at mild reaction conditions is crucial for conducting the direct methane oxidation reaction toward oxygenate products. Many efforts have been put into research on pentasil−type (MFI) zeolites based on mononuclear and/or binuclear iron sites, using H2O2 as the oxidant. In this work, we present a modified liquid ion−exchange method to better control Fe loading in a mordenite−type (MOR) zeolite with a Si/Al molar ratio of 9. The optimized Fe/MOR catalyst showed excellent performance in the direct methane oxidation reaction with turnover frequencies (TOFs) of 555 h−1 to C1 oxygenates, significantly better than the reported activity. Multiple comparative experiments were conducted to reveal the mechanism behind the performance. Strikingly, the active sites in the Fe/MOR catalyst were found to be mononuclear iron sites, confirmed by transmission electron microscopy (TEM), ultraviolet−visible diffuse reflectance spectroscopy (UV−vis DRS), and X-ray absorption spectroscopy (XAS). Increasing the iron loading led to the aggregation of the iron sites, which tend to trigger undesirable side reactions (i.e., H2O2 decomposition and over−oxidation), resulting in a significant decrease in TOFs to C1 oxygenates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe/MOR催化剂上用H2O2有效直接氧化甲烷制备C1氧合物的单体Fe物种鉴定
探索先进的催化剂和在温和反应条件下运行的反应体系是进行甲烷直接氧化反应的关键。以H2O2为氧化剂,研究了基于单核和/或双核铁位的五氟硅(MFI)分子筛。在这项工作中,我们提出了一种改进的液体离子交换方法,以更好地控制Si/Al摩尔比为9的丝光沸石型(MOR)沸石中的铁负载。优化后的Fe/MOR催化剂在甲烷直接氧化反应中表现出优异的性能,转换频率(TOFs)为555 h−1,明显优于已有报道的活性。多次对比实验揭示了性能背后的机制。值得注意的是,通过透射电子显微镜(TEM)、紫外-可见漫反射光谱(UV - vis DRS)和x射线吸收光谱(XAS)证实,Fe/MOR催化剂中的活性位点是单核铁位点。铁负载的增加导致铁位点的聚集,这往往会引发不良的副反应(即H2O2分解和过氧化),导致TOFs到C1氧合物的显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Digestate from a Methane Fermentation Process for Supplying Water and Nutrients in Sweet Potato Cultivation in Sandy Soil Pathways toward Climate-Neutral Red Meat Production Recent Advances in the Use of Controlled Nanocatalysts in Methane Conversion Reactions Dry Reforming of CH4 Using a Microreactor A Study on the Heterogeneity and Anisotropy of the Porous Grout Body Created in the Stabilization of a Methane Hydrate Reservoir through Grouting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1