L. E. Seleznyev, A. A. Chupakhin, V. A. Kostenko, A. O. Shevchenko, A. V. Vartanov
{"title":"Recognition of Mentally Pronounced Russian Phonemes Using Convolutional Neural Networks and Electroencephalography Data","authors":"L. E. Seleznyev, A. A. Chupakhin, V. A. Kostenko, A. O. Shevchenko, A. V. Vartanov","doi":"10.3103/S1060992X23020066","DOIUrl":null,"url":null,"abstract":"<p>We analyze a classification problem of mentally pronounced Russian phonemes based on data obtained by means of an electroencephalography device. We describe the data collection method as well as the methods of the obtained data processing. To solve the small sample size problem we present the augmentation techniques that use the time stretching and the white noise adding. Our approach uses an algorithm based on the convolutional neural networks and it is applicable to solving the binary and multiclass classification problems. The conducted experiments allow us to estimate the accuracy of our algorithms and to compare them to the existing algorithms based on the support vector machine.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 2","pages":"73 - 85"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X23020066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
We analyze a classification problem of mentally pronounced Russian phonemes based on data obtained by means of an electroencephalography device. We describe the data collection method as well as the methods of the obtained data processing. To solve the small sample size problem we present the augmentation techniques that use the time stretching and the white noise adding. Our approach uses an algorithm based on the convolutional neural networks and it is applicable to solving the binary and multiclass classification problems. The conducted experiments allow us to estimate the accuracy of our algorithms and to compare them to the existing algorithms based on the support vector machine.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.