{"title":"Smoothness and Gaussian Density Estimates for Stochastic Functional Differential Equations with Fractional Noise","authors":"N. V. Tan","doi":"10.19139/soic-2310-5070-784","DOIUrl":null,"url":null,"abstract":"In this paper, we study the density of the solution to a class of stochastic functional differential equations driven by fractional Brownian motion. Based on the techniques of Malliavin calculus, we prove the smoothness and establish upper and lower Gaussian estimates for the density.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"822-833"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we study the density of the solution to a class of stochastic functional differential equations driven by fractional Brownian motion. Based on the techniques of Malliavin calculus, we prove the smoothness and establish upper and lower Gaussian estimates for the density.