Robin Ströbel, Yannik Probst, Louisa Hutt, Jürgen Fleischer
{"title":"Software-Defined Workpiece Positioning for Resource-Optimized Machine Tool Utilization","authors":"Robin Ströbel, Yannik Probst, Louisa Hutt, Jürgen Fleischer","doi":"10.36897/jme/161660","DOIUrl":null,"url":null,"abstract":"Advancing climate change, tense world markets, and political pressure steadily increase the demand for resource-optimized production solutions. Herby, the positioning of the raw material in the machine tool is an important factor that has received little attention. Traditionally, this is done centrally on the machine table, which leads to locally increased wear of the feed axis. Furthermore, positioning directly influences energy consumption during machining. Consequently, the longest possible component utilization through optimum wear and energy optimization creates a direct conflict of objectives. To solve this conflict, this paper presents an automated approach for software-defined workpiece positioning and NC-Code optimization regarding the axis-specific energy consumption and the spindle condition of ball screws. An approach for mapping the energy consumption and the directly measured spindle condition is presented. Both represent input variables of the cost function. Approaches for the optimization of the position as well as for the practical implementation are proposed.","PeriodicalId":37821,"journal":{"name":"Journal of Machine Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36897/jme/161660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Advancing climate change, tense world markets, and political pressure steadily increase the demand for resource-optimized production solutions. Herby, the positioning of the raw material in the machine tool is an important factor that has received little attention. Traditionally, this is done centrally on the machine table, which leads to locally increased wear of the feed axis. Furthermore, positioning directly influences energy consumption during machining. Consequently, the longest possible component utilization through optimum wear and energy optimization creates a direct conflict of objectives. To solve this conflict, this paper presents an automated approach for software-defined workpiece positioning and NC-Code optimization regarding the axis-specific energy consumption and the spindle condition of ball screws. An approach for mapping the energy consumption and the directly measured spindle condition is presented. Both represent input variables of the cost function. Approaches for the optimization of the position as well as for the practical implementation are proposed.
期刊介绍:
ournal of Machine Engineering is a scientific journal devoted to current issues of design and manufacturing - aided by innovative computer techniques and state-of-the-art computer systems - of products which meet the demands of the current global market. It favours solutions harmonizing with the up-to-date manufacturing strategies, the quality requirements and the needs of design, planning, scheduling and production process management. The Journal'' s subject matter also covers the design and operation of high efficient, precision, process machines. The Journal is a continuator of Machine Engineering Publisher for five years. The Journal appears quarterly, with a circulation of 100 copies, with each issue devoted entirely to a different topic. The papers are carefully selected and reviewed by distinguished world famous scientists and practitioners. The authors of the publications are eminent specialists from all over the world and Poland. Journal of Machine Engineering provides the best assistance to factories and universities. It enables factories to solve their difficult problems and manufacture good products at a low cost and fast rate. It enables educators to update their teaching and scientists to deepen their knowledge and pursue their research in the right direction.