L. A. Iturri, G. G. Hevia, M. Raviña, D. Buschiazzo
{"title":"Temporal variations of organic matter fractions of different lability in an Entic Haplustoll","authors":"L. A. Iturri, G. G. Hevia, M. Raviña, D. Buschiazzo","doi":"10.3232/SJSS.2017.V7.N2.02","DOIUrl":null,"url":null,"abstract":"Stable and labile soil organic compounds play different roles in the soil. It is a question of how far soil organic matter (SOM) fractions with different labilities vary as a function of climatic and management conditions. In order to answer this question stable (organic C -C-, total N -N-, organic P -Po-), and labile SOM fractions (total carbohydrates -CHt- and hot water soluble carbohydrates -CHw-) were measured monthly for two years in the 10-cm soil top-layer of an Entic Haplustoll, under conventional tillage (CT), vertical tillage (VT) and no-till (NT). Results showed that contents of all analyzed organic fractions were higher in NT than in VT and CT in almost all sampling dates. All organic compounds were less variable with time in NT and VT than in CT, in agreement with the smaller soil disturbance of NT and VT compared to CT. The more labile fractions varied as a function of short term changes in the climatic conditions, mainly temperature. Under soil disturbing tillage systems, the most stable fractions tended to decrease and the more labile to increase with time. This was attributed to the transformation of the more stable into the more labile fractions, possibly due to the disruption of aggregates produced by tillage that favored SOM mineralization. Po was the less variable compound, even under the most disturbing tillage conditions. The quotients C/N, CHt/C and CHw/C evolved similarly in all tillage systems, indicating that that tillage systems change the amount but not the quality of SOM.","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2017-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3232/SJSS.2017.V7.N2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Stable and labile soil organic compounds play different roles in the soil. It is a question of how far soil organic matter (SOM) fractions with different labilities vary as a function of climatic and management conditions. In order to answer this question stable (organic C -C-, total N -N-, organic P -Po-), and labile SOM fractions (total carbohydrates -CHt- and hot water soluble carbohydrates -CHw-) were measured monthly for two years in the 10-cm soil top-layer of an Entic Haplustoll, under conventional tillage (CT), vertical tillage (VT) and no-till (NT). Results showed that contents of all analyzed organic fractions were higher in NT than in VT and CT in almost all sampling dates. All organic compounds were less variable with time in NT and VT than in CT, in agreement with the smaller soil disturbance of NT and VT compared to CT. The more labile fractions varied as a function of short term changes in the climatic conditions, mainly temperature. Under soil disturbing tillage systems, the most stable fractions tended to decrease and the more labile to increase with time. This was attributed to the transformation of the more stable into the more labile fractions, possibly due to the disruption of aggregates produced by tillage that favored SOM mineralization. Po was the less variable compound, even under the most disturbing tillage conditions. The quotients C/N, CHt/C and CHw/C evolved similarly in all tillage systems, indicating that that tillage systems change the amount but not the quality of SOM.
期刊介绍:
The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.