Estimation of dynamic models of recurrent events with censored data

IF 2.9 4区 经济学 Q1 ECONOMICS Econometrics Journal Pub Date : 2020-09-09 DOI:10.1093/ECTJ/UTAA028
Tue Gørgens, Sanghyeok Lee
{"title":"Estimation of dynamic models of recurrent events with censored data","authors":"Tue Gørgens, Sanghyeok Lee","doi":"10.1093/ECTJ/UTAA028","DOIUrl":null,"url":null,"abstract":"In this paper we consider estimation of dynamic models of recurring events (event histories) in continuous time using censored data. We develop maximum simulated likelihood estimators where missing data are integrated out using Monte Carlo and importance sampling methods. We allow for random effects and integrate out the unobserved heterogeneity using a quadrature rule. In Monte Carlo experiments, we find that maximum simulated likelihood estimation is practically feasible and performs better than both listwise deletion and auxiliary modelling of initial conditions.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/ECTJ/UTAA028","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/ECTJ/UTAA028","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we consider estimation of dynamic models of recurring events (event histories) in continuous time using censored data. We develop maximum simulated likelihood estimators where missing data are integrated out using Monte Carlo and importance sampling methods. We allow for random effects and integrate out the unobserved heterogeneity using a quadrature rule. In Monte Carlo experiments, we find that maximum simulated likelihood estimation is practically feasible and performs better than both listwise deletion and auxiliary modelling of initial conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用截尾数据估计周期性事件的动态模型
在本文中,我们考虑使用截尾数据对连续时间内重复事件(事件历史)的动态模型的估计。我们开发了最大模拟似然估计量,其中使用蒙特卡罗和重要性抽样方法对缺失数据进行积分。我们考虑了随机效应,并使用正交规则将未观察到的异质性积分出去。在蒙特卡洛实验中,我们发现最大模拟似然估计在实践中是可行的,并且比初始条件的列表删除和辅助建模都要好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
期刊最新文献
The Vector Error Correction Index Model: Representation, Estimation and Identification Double Robustness for Complier Parameters and a Semiparametric Test for Complier Characteristics Revealing priors from posteriors with an application to inflation forecasting in the UK Penalized quasi-likelihood estimation and model selection with parameters on the boundary of the parameter space Identifying the elasticity of substitution with biased technical change - a structural panel GMM estimator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1