DiffXPBD

IF 1.4 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Proceedings of the ACM on computer graphics and interactive techniques Pub Date : 2023-01-04 DOI:10.1145/3606923
Tuur Stuyck, Hsiao-yu Chen
{"title":"DiffXPBD","authors":"Tuur Stuyck, Hsiao-yu Chen","doi":"10.1145/3606923","DOIUrl":null,"url":null,"abstract":"We present DiffXPBD, a novel and efficient analytical formulation for the differentiable position-based simulation of compliant constrained dynamics (XPBD). Our proposed method allows computation of gradients of numerous parameters with respect to a goal function simultaneously leveraging a performant simulation model. The method is efficient, thus enabling differentiable simulations of high resolution geometries and degrees of freedom (DoFs). Collisions are naturally included in the framework. Our differentiable model allows a user to easily add additional optimization variables. Every control variable gradient requires the computation of only a few partial derivatives which can be computed using automatic differentiation code. We demonstrate the efficacy of the method with examples such as elastic cloth and volumetric material parameter estimation, initial value optimization, optimizing for underlying body shape and pose by only observing the clothing, and optimizing a time-varying external force sequence to match sparse keyframe shapes at specific times. Our approach demonstrates excellent efficiency and we demonstrate this on high resolution meshes with optimizations involving over 26 million degrees of freedom. Making an existing solver differentiable requires only a few modifications and the model is compatible with both modern CPU and GPU multi-core hardware.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":"6 1","pages":"1 - 14"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3606923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We present DiffXPBD, a novel and efficient analytical formulation for the differentiable position-based simulation of compliant constrained dynamics (XPBD). Our proposed method allows computation of gradients of numerous parameters with respect to a goal function simultaneously leveraging a performant simulation model. The method is efficient, thus enabling differentiable simulations of high resolution geometries and degrees of freedom (DoFs). Collisions are naturally included in the framework. Our differentiable model allows a user to easily add additional optimization variables. Every control variable gradient requires the computation of only a few partial derivatives which can be computed using automatic differentiation code. We demonstrate the efficacy of the method with examples such as elastic cloth and volumetric material parameter estimation, initial value optimization, optimizing for underlying body shape and pose by only observing the clothing, and optimizing a time-varying external force sequence to match sparse keyframe shapes at specific times. Our approach demonstrates excellent efficiency and we demonstrate this on high resolution meshes with optimizations involving over 26 million degrees of freedom. Making an existing solver differentiable requires only a few modifications and the model is compatible with both modern CPU and GPU multi-core hardware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DiffXPBD
本文提出了柔性约束动力学(XPBD)可微位置仿真的一种新颖有效的解析公式DiffXPBD。我们提出的方法允许计算相对于目标函数的多个参数的梯度,同时利用性能模拟模型。该方法是有效的,因此可以实现高分辨率几何形状和自由度(DoFs)的微分模拟。冲突自然包含在框架中。我们的可微分模型允许用户轻松地添加额外的优化变量。每个控制变量梯度只需要计算几个偏导数,这些偏导数可以用自动微分代码计算。我们通过弹性布料和体积材料参数估计、初始值优化、仅通过观察服装来优化潜在的身体形状和姿势、优化时变外力序列以匹配特定时间的稀疏关键帧形状等实例证明了该方法的有效性。我们的方法展示了卓越的效率,我们在涉及超过2600万个自由度的高分辨率网格优化上证明了这一点。使现有的求解器可微只需要少量修改,并且该模型兼容现代CPU和GPU多核硬件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Using Deep Learning to Increase Eye-Tracking Robustness, Accuracy, and Precision in Virtual Reality. A Multilevel Active-Set Preconditioner for Box-Constrained Pressure Poisson Solvers Motion In-Betweening with Phase Manifolds NeuroDog A Unified Analysis of Penalty-Based Collision Energies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1