{"title":"Analysis of Enzyme Conformation Dynamics Using Single-Molecule Förster Resonance Energy Transfer (smFRET)","authors":"Mai T Huynh, B. Sengupta","doi":"10.3390/biophysica2020014","DOIUrl":null,"url":null,"abstract":"Single-molecule Förster resonance energy transfer (smFRET) enables the deconvolution of various conformational substates of biomolecules. Over the past two decades, it has been widely used to understand the conformational dynamics of enzymes. Commonly, enzymes undergo reversible transitions between active and inactive states in solution. Using smFRET, the details of these transitions and the effect of ligands on these dynamics have been determined. In this mini-review, we discuss the various works focused on the investigation of enzyme conformational dynamics using smFRET.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biophysica2020014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Single-molecule Förster resonance energy transfer (smFRET) enables the deconvolution of various conformational substates of biomolecules. Over the past two decades, it has been widely used to understand the conformational dynamics of enzymes. Commonly, enzymes undergo reversible transitions between active and inactive states in solution. Using smFRET, the details of these transitions and the effect of ligands on these dynamics have been determined. In this mini-review, we discuss the various works focused on the investigation of enzyme conformational dynamics using smFRET.