{"title":"Clustering methods for single-cell RNA-sequencing expression data: performance evaluation with varying sample sizes and cell compositions","authors":"A. Suner","doi":"10.1515/sagmb-2019-0004","DOIUrl":null,"url":null,"abstract":"Abstract A number of specialized clustering methods have been developed so far for the accurate analysis of single-cell RNA-sequencing (scRNA-seq) expression data, and several reports have been published documenting the performance measures of these clustering methods under different conditions. However, to date, there are no available studies regarding the systematic evaluation of the performance measures of the clustering methods taking into consideration the sample size and cell composition of a given scRNA-seq dataset. Herein, a comprehensive performance evaluation study of 11 selected scRNA-seq clustering methods was performed using synthetic datasets with known sample sizes and number of subpopulations, as well as varying levels of transcriptome complexity. The results indicate that the overall performance of the clustering methods under study are highly dependent on the sample size and complexity of the scRNA-seq dataset. In most of the cases, better clustering performances were obtained as the number of cells in a given expression dataset was increased. The findings of this study also highlight the importance of sample size for the successful detection of rare cell subpopulations with an appropriate clustering tool.","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2019-0004","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2019-0004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract A number of specialized clustering methods have been developed so far for the accurate analysis of single-cell RNA-sequencing (scRNA-seq) expression data, and several reports have been published documenting the performance measures of these clustering methods under different conditions. However, to date, there are no available studies regarding the systematic evaluation of the performance measures of the clustering methods taking into consideration the sample size and cell composition of a given scRNA-seq dataset. Herein, a comprehensive performance evaluation study of 11 selected scRNA-seq clustering methods was performed using synthetic datasets with known sample sizes and number of subpopulations, as well as varying levels of transcriptome complexity. The results indicate that the overall performance of the clustering methods under study are highly dependent on the sample size and complexity of the scRNA-seq dataset. In most of the cases, better clustering performances were obtained as the number of cells in a given expression dataset was increased. The findings of this study also highlight the importance of sample size for the successful detection of rare cell subpopulations with an appropriate clustering tool.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.