Engineered photoresponsive biohybrids for tumor therapy.

Smart medicine Pub Date : 2023-03-10 eCollection Date: 2023-05-01 DOI:10.1002/SMMD.20220041
Xiaocheng Wang, Yazhi Sun, Daniel Wangpraseurt
{"title":"Engineered photoresponsive biohybrids for tumor therapy.","authors":"Xiaocheng Wang, Yazhi Sun, Daniel Wangpraseurt","doi":"10.1002/SMMD.20220041","DOIUrl":null,"url":null,"abstract":"<p><p>Engineered biohybrids have recently emerged as innovative biomimetic platforms for cancer therapeutic applications. Particularly, engineered photoresponsive biohybrids hold tremendous potential against tumors due to their intriguing biomimetic properties, photoresponsive ability, and enhanced biotherapeutic functions. In this review, the design principles of engineered photoresponsive biohybrids and their latest progresses for tumor therapy are summarized. Representative engineered photoresponsive biohybrids are highlighted including biomolecules-associated, cell membrane-based, eukaryotic cell-based, bacteria-based, and algae-based photoresponsive biohybrids. Representative tumor therapeutic modalities of the engineered photoresponsive biohybrids are presented, including photothermal therapy, photodynamic therapy, synergistic therapy, and tumor therapy combined with tissue regeneration. Moreover, the challenges and future perspectives of these photoresponsive biohybrids for clinical practice are discussed.</p>","PeriodicalId":74816,"journal":{"name":"Smart medicine","volume":" ","pages":"e20220041"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11235730/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/SMMD.20220041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Engineered biohybrids have recently emerged as innovative biomimetic platforms for cancer therapeutic applications. Particularly, engineered photoresponsive biohybrids hold tremendous potential against tumors due to their intriguing biomimetic properties, photoresponsive ability, and enhanced biotherapeutic functions. In this review, the design principles of engineered photoresponsive biohybrids and their latest progresses for tumor therapy are summarized. Representative engineered photoresponsive biohybrids are highlighted including biomolecules-associated, cell membrane-based, eukaryotic cell-based, bacteria-based, and algae-based photoresponsive biohybrids. Representative tumor therapeutic modalities of the engineered photoresponsive biohybrids are presented, including photothermal therapy, photodynamic therapy, synergistic therapy, and tumor therapy combined with tissue regeneration. Moreover, the challenges and future perspectives of these photoresponsive biohybrids for clinical practice are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于肿瘤治疗的工程光反应生物杂合体
工程生物杂交体最近成为癌症治疗应用的创新仿生平台。特别是,由于其有趣的仿生特性、光反应能力和增强的生物治疗功能,工程光反应生物杂合体具有巨大的抗肿瘤潜力。本文综述了工程光反应生物杂合体的设计原理及其在肿瘤治疗中的最新进展。具有代表性的工程光反应生物杂交种包括生物分子相关的、基于细胞膜的、基于真核细胞的、基于细菌的和基于藻类的光反应生物杂交种。介绍了具有代表性的工程光反应生物杂合体的肿瘤治疗方式,包括光热治疗、光动力治疗、协同治疗和肿瘤治疗结合组织再生。此外,还讨论了这些光反应性生物杂交体在临床实践中的挑战和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics. Dear-PSM: A deep learning-based peptide search engine enables full database search for proteomics. Developing functional hydrogels for treatment of oral diseases Sustainable synthesis of carbon dots via bio‐waste recycling for biomedical imaging Engineering strategies for apoptotic bodies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1