S. Bhujbal, R. Badhe, S. Darade, Siddharth Dharmadhikari, Suresh Choudhary
{"title":"Development and evaluation of injectable hydrogel as a controlled drug delivery system for metformin","authors":"S. Bhujbal, R. Badhe, S. Darade, Siddharth Dharmadhikari, Suresh Choudhary","doi":"10.4103/jrptps.JRPTPS_140_19","DOIUrl":null,"url":null,"abstract":"Aim: Chitosan-dialdehyde cellulose/DAC-based injectable hydrogel for controlled release of Metformin. Materials and Methods: Biomaterial-based injectable hydrogel was prepared by incorporating chitosan and dialdehyde cellulose. Dialdehyde cellulose (A cross-linker) was prepared by periodate oxidation method. The antidiabetic agent metformin was easily mixed with the chitosan and dialdehyde cellulose cross-linked solution, for the controlled drug delivery applications. The prepared injectable hydrogel showed the shear thinning property. Results: IR spectra confirmed the presence of cross-linked network between chitosan and dialdehyde cellulose. The physical appearance, injectability, pH, sol–gel phase transition, drug content, DSC, FTIR, and SEM studies were investigated. DSC and SEM studies revealed the degradation pattern and the topographical nature of prepared injectable hydrogel, respectively. The %drug release of metformin was found to be 87.25% prolonged for 84 h. The drug release pattern revealed the effective controlled drug delivery of metformin as compared to marketed tablet formulation. Conclusion: The study suggested that the controlled drug delivery system can be incorporated into the injectable hydrogel system; it would be more potential as compared to conventional controlled drug delivery system and preformed hydrogel system.","PeriodicalId":16966,"journal":{"name":"Journal of Reports in Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reports in Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jrptps.JRPTPS_140_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: Chitosan-dialdehyde cellulose/DAC-based injectable hydrogel for controlled release of Metformin. Materials and Methods: Biomaterial-based injectable hydrogel was prepared by incorporating chitosan and dialdehyde cellulose. Dialdehyde cellulose (A cross-linker) was prepared by periodate oxidation method. The antidiabetic agent metformin was easily mixed with the chitosan and dialdehyde cellulose cross-linked solution, for the controlled drug delivery applications. The prepared injectable hydrogel showed the shear thinning property. Results: IR spectra confirmed the presence of cross-linked network between chitosan and dialdehyde cellulose. The physical appearance, injectability, pH, sol–gel phase transition, drug content, DSC, FTIR, and SEM studies were investigated. DSC and SEM studies revealed the degradation pattern and the topographical nature of prepared injectable hydrogel, respectively. The %drug release of metformin was found to be 87.25% prolonged for 84 h. The drug release pattern revealed the effective controlled drug delivery of metformin as compared to marketed tablet formulation. Conclusion: The study suggested that the controlled drug delivery system can be incorporated into the injectable hydrogel system; it would be more potential as compared to conventional controlled drug delivery system and preformed hydrogel system.
期刊介绍:
The Journal of Reports in Pharmaceutical Sciences(JRPS) is a biannually peer-reviewed multi-disciplinary pharmaceutical publication to serve as a means for scientific information exchange in the international pharmaceutical forum. It accepts novel findings that contribute to advancement of scientific knowledge in pharmaceutical fields that not published or under consideration for publication anywhere else for publication in JRPS as original research article. all aspects of pharmaceutical sciences consist of medicinal chemistry, molecular modeling, drug design, pharmaceutics, biopharmacy, pharmaceutical nanotechnology, pharmacognosy, natural products, pharmaceutical biotechnology, pharmacology, toxicology and clinical pharmacy.