Vanessa C. K. Terrell, J. Maerz, Nathan J. Engbrecht, Rochelle M Stiles, B. Crawford, M. Lannoo
{"title":"Breeding Population Dynamics of Threatened Crawfish Frogs Inform Targets for Habitat Management","authors":"Vanessa C. K. Terrell, J. Maerz, Nathan J. Engbrecht, Rochelle M Stiles, B. Crawford, M. Lannoo","doi":"10.1643/h2022031","DOIUrl":null,"url":null,"abstract":"We used data from a five-year study at two focal breeding wetlands of a single Crawfish Frog (Rana areolata) population to demonstrate the relative importance and potential of tadpole survival as a target for population management. We concurrently estimated 11 vital rates in the field and used a females-only matrix projection model to estimate elasticities of demographic rates. We then simulated stochastic population dynamics at each wetland with and without immigration to estimate the intrinsic capacity for each focal breeding wetland to sustain a Crawfish Frog breeding population and the likelihood of breeding population persistence at each wetland. Elasticity of tadpole survival was second only to juvenile survival elasticity and 1.34–2.04 times greater than adult survival elasticity. Projections indicated that the Crawfish Frog population was not at risk of extinction but only one breeding site was capable of self-sustaining a breeding population. Because of low tadpole survival, the other breeding site was completely dependent on immigration to persist and was functioning as a population sink. Despite higher variability compared to terrestrial vital rates, larval survival did have a strong effect on population growth. Tadpole survival at the more productive breeding site was density dependent and likely related to wetland vegetation and predator and competitor abundance. Two additional findings were that annual survival of frogs following their first known breeding event was 48% lower compared to survival of frogs that had bred in two or more prior years, and adult temporary emigration from the breeding population was moderately high. Our study demonstrates the benefits of using population models that integrate density-dependent processes, temporary emigration from the breeding population, and state-specific adult survival, to identify larval habitats that function as population sinks and limit current population size and persistence probability. We contend that tadpole survival is an important and feasible habitat management target within broader conservation strategies for Crawfish Frogs and other amphibian species.","PeriodicalId":29892,"journal":{"name":"Ichthyology and Herpetology","volume":"111 1","pages":"72 - 86"},"PeriodicalIF":1.5000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ichthyology and Herpetology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1643/h2022031","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We used data from a five-year study at two focal breeding wetlands of a single Crawfish Frog (Rana areolata) population to demonstrate the relative importance and potential of tadpole survival as a target for population management. We concurrently estimated 11 vital rates in the field and used a females-only matrix projection model to estimate elasticities of demographic rates. We then simulated stochastic population dynamics at each wetland with and without immigration to estimate the intrinsic capacity for each focal breeding wetland to sustain a Crawfish Frog breeding population and the likelihood of breeding population persistence at each wetland. Elasticity of tadpole survival was second only to juvenile survival elasticity and 1.34–2.04 times greater than adult survival elasticity. Projections indicated that the Crawfish Frog population was not at risk of extinction but only one breeding site was capable of self-sustaining a breeding population. Because of low tadpole survival, the other breeding site was completely dependent on immigration to persist and was functioning as a population sink. Despite higher variability compared to terrestrial vital rates, larval survival did have a strong effect on population growth. Tadpole survival at the more productive breeding site was density dependent and likely related to wetland vegetation and predator and competitor abundance. Two additional findings were that annual survival of frogs following their first known breeding event was 48% lower compared to survival of frogs that had bred in two or more prior years, and adult temporary emigration from the breeding population was moderately high. Our study demonstrates the benefits of using population models that integrate density-dependent processes, temporary emigration from the breeding population, and state-specific adult survival, to identify larval habitats that function as population sinks and limit current population size and persistence probability. We contend that tadpole survival is an important and feasible habitat management target within broader conservation strategies for Crawfish Frogs and other amphibian species.