Prevention of Large Deformation of Soft Surrounding Rock in Tunnel Construction

IF 0.6 Q4 ENGINEERING, MECHANICAL Journal of Measurements in Engineering Pub Date : 2023-06-26 DOI:10.21595/jme.2023.23065
Xiaoqing Suo, Feng Gao, Bo Hu, Xuefu Zhang, R. Qu
{"title":"Prevention of Large Deformation of Soft Surrounding Rock in Tunnel Construction","authors":"Xiaoqing Suo, Feng Gao, Bo Hu, Xuefu Zhang, R. Qu","doi":"10.21595/jme.2023.23065","DOIUrl":null,"url":null,"abstract":"Large deformation of surrounding rock makes the internal space of a tunnel cannot meet the requirements of normal use after support, even leads to the instability of surrounding rock and destruction of the tunnel structure. In order to optimize the parameters of the primary support to control the deformation of surrounding rock, field tests and numerical simulations are carried out. Based on the engineering geological conditions and the deformation monitoring data of surrounding rock, four important creep parameters of the improved Burgers model are inversed by numerical simulation, considering the creep of surrounding rock in tunnel construction. The results show that it is feasible to use tunnel crown settlement as a control indicator to determine the thickness of shotcrete. Short rock bolts are preferentially used in the tunnel arches, and a combination of long and short rock bolts should be used on the sidewall to control the large deformation of surrounding rock. When the excavation method of upper-lower bench is used in the single-track railway with a relatively large high-span ratio, the horizontal convergence monitoring points of the upper bench are recommended to be set 0.8-0.9 times the height of the upper bench from the tunnel arch crown, and those of the lower bench are recommended to be set 0.6-0.7 times the total height of the upper-lower bench from the tunnel arch crown.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Measurements in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/jme.2023.23065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Large deformation of surrounding rock makes the internal space of a tunnel cannot meet the requirements of normal use after support, even leads to the instability of surrounding rock and destruction of the tunnel structure. In order to optimize the parameters of the primary support to control the deformation of surrounding rock, field tests and numerical simulations are carried out. Based on the engineering geological conditions and the deformation monitoring data of surrounding rock, four important creep parameters of the improved Burgers model are inversed by numerical simulation, considering the creep of surrounding rock in tunnel construction. The results show that it is feasible to use tunnel crown settlement as a control indicator to determine the thickness of shotcrete. Short rock bolts are preferentially used in the tunnel arches, and a combination of long and short rock bolts should be used on the sidewall to control the large deformation of surrounding rock. When the excavation method of upper-lower bench is used in the single-track railway with a relatively large high-span ratio, the horizontal convergence monitoring points of the upper bench are recommended to be set 0.8-0.9 times the height of the upper bench from the tunnel arch crown, and those of the lower bench are recommended to be set 0.6-0.7 times the total height of the upper-lower bench from the tunnel arch crown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
隧道施工中软围岩大变形的防治
围岩的大变形使得支护后隧道内部空间不能满足正常使用的要求,甚至导致围岩失稳和隧道结构的破坏。为了优化主支护参数,控制围岩变形,进行了现场试验和数值模拟。基于工程地质条件和围岩变形监测资料,考虑隧道施工中围岩蠕变,对改进Burgers模型的4个重要蠕变参数进行了数值模拟反演。结果表明,将隧道顶沉降作为确定喷射混凝土厚度的控制指标是可行的。隧道拱优先采用短锚杆,侧壁应采用长短锚杆组合,以控制围岩的大变形。当采用上下台阶开挖法开挖单线铁路,且高跨比较大时,上台阶水平辐合监测点建议设置为上台阶距隧道拱顶高度的0.8 ~ 0.9倍,下台阶水平辐合监测点建议设置为上下台阶距隧道拱顶总高度的0.6 ~ 0.7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Measurements in Engineering
Journal of Measurements in Engineering ENGINEERING, MECHANICAL-
CiteScore
2.00
自引率
6.20%
发文量
16
审稿时长
16 weeks
期刊最新文献
A train F-TR lock anti-lifting detection method based on improved BP neural network YOLOv3-MSSA based hot spot defect detection for photovoltaic power stations Displacement analysis and numerical simulation of pile-anchor retaining structure in deep foundation pit Static transmission error measurement of various gear-shaft systems by finite element analysis Test and application of movable steel barrier with grade SB light composite corrugated beam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1