{"title":"Sacred groves: a model of Zagros forests for carbon sequestration and climate change mitigation","authors":"Aioub Moradi, N. Shabanian","doi":"10.1017/s0376892923000127","DOIUrl":null,"url":null,"abstract":"\n Forests are the most important carbon pools among terrestrial ecosystems, and ensuring less disturbance of sacred groves might constitute a form of forest management for carbon sequestration and climate change reduction. The carbon contents in Zagros oak sacred groves and silvopastoral lands were compared to determine the carbon sequestration potential of these forests. Using a nested sampling design, we measured total carbon content (tC ha–1; aboveground tree biomass, aboveground sapling biomass, belowground biomass, soil organic carbon, leaf litter, herbs and grasses and dead wood and fallen stumps) in both forest groves and silvopastoral lands. The mean total biomass and mean total carbon content varied between sacred groves (453.8 t ha–1 and 338.79 tC ha–1, respectively) and silvopastoral lands (89.4 t ha–1 and 113.46 tC ha–1, respectively). Mean soil organic carbon was significantly lower (71.44 tC ha–1) in silvopastoral lands than in sacred groves (125.49 tC ha–1). The mean total sequestered carbon dioxide (CO2) was 1243.36 tCO2 ha–1 in the sacred groves and 416.40 tCO2 ha–1 in silvopastoral lands. We conclude that human activities have reduced the CO2 absorption capacity of the forests. The substantial disparities between the landscapes emphasize the need to restore damaged forests, and sacred groves might be a useful model for increasing carbon storage in these forests.","PeriodicalId":50517,"journal":{"name":"Environmental Conservation","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1017/s0376892923000127","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 2
Abstract
Forests are the most important carbon pools among terrestrial ecosystems, and ensuring less disturbance of sacred groves might constitute a form of forest management for carbon sequestration and climate change reduction. The carbon contents in Zagros oak sacred groves and silvopastoral lands were compared to determine the carbon sequestration potential of these forests. Using a nested sampling design, we measured total carbon content (tC ha–1; aboveground tree biomass, aboveground sapling biomass, belowground biomass, soil organic carbon, leaf litter, herbs and grasses and dead wood and fallen stumps) in both forest groves and silvopastoral lands. The mean total biomass and mean total carbon content varied between sacred groves (453.8 t ha–1 and 338.79 tC ha–1, respectively) and silvopastoral lands (89.4 t ha–1 and 113.46 tC ha–1, respectively). Mean soil organic carbon was significantly lower (71.44 tC ha–1) in silvopastoral lands than in sacred groves (125.49 tC ha–1). The mean total sequestered carbon dioxide (CO2) was 1243.36 tCO2 ha–1 in the sacred groves and 416.40 tCO2 ha–1 in silvopastoral lands. We conclude that human activities have reduced the CO2 absorption capacity of the forests. The substantial disparities between the landscapes emphasize the need to restore damaged forests, and sacred groves might be a useful model for increasing carbon storage in these forests.
期刊介绍:
Environmental Conservation is one of the longest-standing, most highly-cited of the interdisciplinary environmental science journals. It includes research papers, reports, comments, subject reviews, and book reviews addressing environmental policy, practice, and natural and social science of environmental concern at the global level, informed by rigorous local level case studies. The journal"s scope is very broad, including issues in human institutions, ecosystem change, resource utilisation, terrestrial biomes, aquatic systems, and coastal and land use management. Environmental Conservation is essential reading for all environmentalists, managers, consultants, agency workers and scientists wishing to keep abreast of current developments in environmental science.