Research on fabric classification based on graph neural network

IF 1 4区 工程技术 Q3 MATERIALS SCIENCE, TEXTILES Industria Textila Pub Date : 2023-02-28 DOI:10.35530/it.074.01.202224
Peng Tao, Cao Wenli, Chen Jia, LV Xinghang, Zhang Zili, Liu Junping, Hu Xinrong
{"title":"Research on fabric classification based on graph neural network","authors":"Peng Tao, Cao Wenli, Chen Jia, LV Xinghang, Zhang Zili, Liu Junping, Hu Xinrong","doi":"10.35530/it.074.01.202224","DOIUrl":null,"url":null,"abstract":"Fabric classification plays a crucial role in the modern textile industry and fashion market. In the early stage, traditional\nneural network methods were adopted to identify fabrics with the drawback of restricted fabric type and poor accuracy.\nCombining multi-frame temporality and analysing fabric graph data made from fabric motion features, this paper\nproposes a novel hybrid model that introduces the concept of graph networks to classify 30 textile materials in a public\ndatabase. We utilize the graph inductive representation learning method (GraphSAGE, Graph Sample and Aggregate)\nto extract node embedding features of the fabric. Moreover, bidirectional gated recurrent unit and layer attention\nmechanism (BiGRU-attention) are employed in the last layer of aggregation to calculate the score of previous cells.\nIntending to further enhance performance, we link the jump connection with adaptive selection aggregation frameworks\nto determine the influential region of each node. Our method breaks through the limitation that the original methods can\nonly classify a few fabrics with great classification results.","PeriodicalId":13638,"journal":{"name":"Industria Textila","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industria Textila","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35530/it.074.01.202224","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

Fabric classification plays a crucial role in the modern textile industry and fashion market. In the early stage, traditional neural network methods were adopted to identify fabrics with the drawback of restricted fabric type and poor accuracy. Combining multi-frame temporality and analysing fabric graph data made from fabric motion features, this paper proposes a novel hybrid model that introduces the concept of graph networks to classify 30 textile materials in a public database. We utilize the graph inductive representation learning method (GraphSAGE, Graph Sample and Aggregate) to extract node embedding features of the fabric. Moreover, bidirectional gated recurrent unit and layer attention mechanism (BiGRU-attention) are employed in the last layer of aggregation to calculate the score of previous cells. Intending to further enhance performance, we link the jump connection with adaptive selection aggregation frameworks to determine the influential region of each node. Our method breaks through the limitation that the original methods can only classify a few fabrics with great classification results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图神经网络的织物分类研究
织物分类在现代纺织工业和服装市场中起着至关重要的作用。早期采用传统的神经网络方法进行织物识别,存在织物类型受限、准确率不高的缺点。结合多帧时间性和分析织物运动特征生成的织物图数据,提出了一种新的混合模型,引入图网络的概念对公共数据库中的30种纺织材料进行分类。我们利用图归纳表示学习方法(GraphSAGE、graph Sample和Aggregate)来提取织物的节点嵌入特征。最后一层聚合采用双向门控循环单元和层注意机制(BiGRU-attention)计算前一层细胞的得分。为了进一步提高性能,我们将跳跃连接与自适应选择聚合框架联系起来,以确定每个节点的影响区域。我们的方法突破了原有方法只能对少数织物进行分类的局限,分类效果很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Industria Textila
Industria Textila 工程技术-材料科学:纺织
CiteScore
1.80
自引率
14.30%
发文量
81
审稿时长
3.5 months
期刊介绍: Industria Textila journal is addressed to university and research specialists, to companies active in the textiles and clothing sector and to the related sectors users of textile products with a technical purpose.
期刊最新文献
The effect of dyeing tubes’ structure on the colour difference of yarns Colour prediction as a weaving design selection help tool in Jacquard CAD Evaluation of the comfort properties of functional knitted fabrics for people with special needs An online blockchain based sustainable logistics management system (OBSLMS) enabled by the Internet of Things for the textile industry Inclusion complexes of β-cyclodextrıne with Fe3O4@HA@Ag Part II: Their use in the production of PVP nanowebs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1