{"title":"Modelling of Flow Patterns over Spillway with CFD (Case Study: Haditha Dam in Iraq)","authors":"A. S. Almawla, A. H. Kamel, A. Lateef","doi":"10.18280/ijdne.160404","DOIUrl":null,"url":null,"abstract":"Spillways are designing to release surplus water over a volume of storage. The excess water flows from the top of the reservoir and is carried back to the river by a spillway. Many radial gates were destroyed under hydrodynamic load. Radial gate connectors are susceptible to fatigue failure due to excessive vibration; therefore, gate vibration during operation must be investigated to confirm safe operation at the design water pressure. Several studies were carried out to analyse and simulation of flow over the spillway. In this article, the flow pattern over the Haditha dam spillway has been simulated using computational fluid dynamics (CFD). The numerical model was performed using Ansys Fluent 2020 R1 to simulate the flow properties; determination of cavitation damage at three discharges corresponding in the design of Haditha dam are 4700, 7140, and 7900 m3/s. In addition to finding the effect of gate vibration under dynamic water loads. The Realisable k-ɛ turbulence model was utilised with the volume of fluid (VOF) model to simulate the interaction between air and water phases. The validation of the numerical model was achieved by comparing it with a physical model. The physical model of the Haditha Dam spillway was made from iron with a scale of 1:110. It has been designed and constructed in a hydraulic laboratory according to the modelling principle of the hydraulic structure. The results showed that a high agreement between the physical and numerical model and the k-ɛ turbulence model could simulate the Haditha dam spillway with low cost and few times. The cavitation damage may occur at the region start at the end of the arching spillway to stretches downstream, and there is no damage of gate vibration under dynamic water load.","PeriodicalId":39816,"journal":{"name":"International Journal of Design and Nature and Ecodynamics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Design and Nature and Ecodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ijdne.160404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
Spillways are designing to release surplus water over a volume of storage. The excess water flows from the top of the reservoir and is carried back to the river by a spillway. Many radial gates were destroyed under hydrodynamic load. Radial gate connectors are susceptible to fatigue failure due to excessive vibration; therefore, gate vibration during operation must be investigated to confirm safe operation at the design water pressure. Several studies were carried out to analyse and simulation of flow over the spillway. In this article, the flow pattern over the Haditha dam spillway has been simulated using computational fluid dynamics (CFD). The numerical model was performed using Ansys Fluent 2020 R1 to simulate the flow properties; determination of cavitation damage at three discharges corresponding in the design of Haditha dam are 4700, 7140, and 7900 m3/s. In addition to finding the effect of gate vibration under dynamic water loads. The Realisable k-ɛ turbulence model was utilised with the volume of fluid (VOF) model to simulate the interaction between air and water phases. The validation of the numerical model was achieved by comparing it with a physical model. The physical model of the Haditha Dam spillway was made from iron with a scale of 1:110. It has been designed and constructed in a hydraulic laboratory according to the modelling principle of the hydraulic structure. The results showed that a high agreement between the physical and numerical model and the k-ɛ turbulence model could simulate the Haditha dam spillway with low cost and few times. The cavitation damage may occur at the region start at the end of the arching spillway to stretches downstream, and there is no damage of gate vibration under dynamic water load.
期刊介绍:
The International Journal of Design & Nature and Ecodynamics acts as a channel of communication for researchers from around the world working on a variety of studies involving nature and its significance to modern scientific thought and design. These studies have demonstrated the rich diversity of the natural world. Ecodynamics in particular aims to relate ecosystems to evolutionary thermodynamics in order to arrive at satisfactory solutions for sustainable development. The International Journal of Design & Nature and Ecodynamics also opens new avenues for understanding the relationship between arts and sciences.