{"title":"Novel oxalamide derivatives for COXs expression and breast cancer: design, synthesis, biological evaluation, and docking studies","authors":"B. Kuzu, C. Hepokur, Ö. Algül","doi":"10.25135/acg.oc.154.2306.2820","DOIUrl":null,"url":null,"abstract":": In the present study, new oxalamide-based compounds were designed from thalidomide and synthesized easily and with high yields (from 69% up to 93%) by a two-step method. The antiproliferative effects of synthesized 6a-d and 7a-d compounds on (ER+) MCF-7 and (ER-) MDA-MB-231 breast cancer cell line and human fibroblast WI-38 healthy cell line were investigated by the MTT method. The results showed that compound 7d was the most potent candidate against both MCF-7 and MDA-MB-231 cell lines with IC 50 = 4.72 µM and 6.37 µM, respectively. To investigate whether antiproliferative effect of the compounds on breast cancer cell lines is dependent on COXs, expressions of COX-1/2 on the MCF-7 cell line were investigated by the Western-Blot technique. Among synthesized compounds, compound 7d increased the expression of both COX-1 and COX-2. The inhibition potential of compounds on COX-1/2 enzymes was investigated by molecular docking compared to inhibitor co-ligand celecoxib in crystal structures of COX-1 (PDB ID: 3KK6) and COX-2 (PDB ID: 3LN1). Docking results indeed showed that compound 7d had a higher binding affinity for both COX-1 and COX-2 active sites. Consequently, the novel oxalamide-based compounds presented here may be important candidate molecules for the development of new COX-dependent antiproliferative agents.","PeriodicalId":19553,"journal":{"name":"Organic Communications","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25135/acg.oc.154.2306.2820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
: In the present study, new oxalamide-based compounds were designed from thalidomide and synthesized easily and with high yields (from 69% up to 93%) by a two-step method. The antiproliferative effects of synthesized 6a-d and 7a-d compounds on (ER+) MCF-7 and (ER-) MDA-MB-231 breast cancer cell line and human fibroblast WI-38 healthy cell line were investigated by the MTT method. The results showed that compound 7d was the most potent candidate against both MCF-7 and MDA-MB-231 cell lines with IC 50 = 4.72 µM and 6.37 µM, respectively. To investigate whether antiproliferative effect of the compounds on breast cancer cell lines is dependent on COXs, expressions of COX-1/2 on the MCF-7 cell line were investigated by the Western-Blot technique. Among synthesized compounds, compound 7d increased the expression of both COX-1 and COX-2. The inhibition potential of compounds on COX-1/2 enzymes was investigated by molecular docking compared to inhibitor co-ligand celecoxib in crystal structures of COX-1 (PDB ID: 3KK6) and COX-2 (PDB ID: 3LN1). Docking results indeed showed that compound 7d had a higher binding affinity for both COX-1 and COX-2 active sites. Consequently, the novel oxalamide-based compounds presented here may be important candidate molecules for the development of new COX-dependent antiproliferative agents.