Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries
Chong Xu, Guang Ma, Wang Yang, Sai Che, Neng Chen, Ni Wu, Bo Jiang, Ye Wang, Yankun Sun, Sijia Liao, Jiahao Yang, Xiang Li, Guoyong Huang, Yongfeng Li
{"title":"Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries","authors":"Chong Xu, Guang Ma, Wang Yang, Sai Che, Neng Chen, Ni Wu, Bo Jiang, Ye Wang, Yankun Sun, Sijia Liao, Jiahao Yang, Xiang Li, Guoyong Huang, Yongfeng Li","doi":"10.1007/s11706-023-0651-y","DOIUrl":null,"url":null,"abstract":"<div><p>Sn-based materials are considered as a kind of potential anode materials for lithium-ion batteries (LIBs) owing to their high theoretical capacity. However, their use is limited by large volume expansion deriving from the lithiation/delithiation process. In this work, amorphous Sn modified nitrogen-doped porous carbon nanosheets (ASn-NPCNs) are obtained. The synergistic effect of amorphous Sn and high edge-nitrogen-doped level porous carbon nanosheets provides ASn-NPCNs with multiple advantages containing abundant defect sites, high specific surface area (214.9 m<sup>2</sup>·g<sup>−</sup><sup>1</sup>), and rich hierarchical pores, which can promote the lithium-ion storage. Serving as the LIB anode, the as-prepared ASn-NPCNs-750 electrode exhibits an ultrahigh capacity of 1643 mAh·g<sup>−</sup><sup>1</sup> at 0.1 A·g<sup>−</sup><sup>1</sup>, ultrafast rate performance of 490 mAh·g<sup>−</sup><sup>1</sup> at 10 A·g<sup>−</sup><sup>1</sup>, and superior long-term cycling performance of 988 mAh·g<sup>−</sup><sup>1</sup> at 1 A·g<sup>−</sup><sup>1</sup> after 2000 cycles with a capacity retention of 98.9%. Furthermore, the in-depth electrochemical kinetic test confirms that the ultrahigh-capacity and fast-charging performance of the ASn-NPCNs-750 electrode is ascribed to the rapid capacitive mechanism. These impressive results indicate that ASn-NPCNs-750 can be a potential anode material for high-capacity and fast-charging LIBs.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0651-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sn-based materials are considered as a kind of potential anode materials for lithium-ion batteries (LIBs) owing to their high theoretical capacity. However, their use is limited by large volume expansion deriving from the lithiation/delithiation process. In this work, amorphous Sn modified nitrogen-doped porous carbon nanosheets (ASn-NPCNs) are obtained. The synergistic effect of amorphous Sn and high edge-nitrogen-doped level porous carbon nanosheets provides ASn-NPCNs with multiple advantages containing abundant defect sites, high specific surface area (214.9 m2·g−1), and rich hierarchical pores, which can promote the lithium-ion storage. Serving as the LIB anode, the as-prepared ASn-NPCNs-750 electrode exhibits an ultrahigh capacity of 1643 mAh·g−1 at 0.1 A·g−1, ultrafast rate performance of 490 mAh·g−1 at 10 A·g−1, and superior long-term cycling performance of 988 mAh·g−1 at 1 A·g−1 after 2000 cycles with a capacity retention of 98.9%. Furthermore, the in-depth electrochemical kinetic test confirms that the ultrahigh-capacity and fast-charging performance of the ASn-NPCNs-750 electrode is ascribed to the rapid capacitive mechanism. These impressive results indicate that ASn-NPCNs-750 can be a potential anode material for high-capacity and fast-charging LIBs.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.