Usage of 3D Printed Polylactic Acid as a Core Material in Forming of Carbon Fiber Fabric Composite

IF 0.6 4区 工程技术 Q4 MATERIALS SCIENCE, TEXTILES Tekstil Ve Konfeksiyon Pub Date : 2022-09-28 DOI:10.32710/tekstilvekonfeksiyon.1056781
Onur Kaya, Ömer Yunus Gümüş, Israfil Küçük, S. Aslan
{"title":"Usage of 3D Printed Polylactic Acid as a Core Material in Forming of Carbon Fiber Fabric Composite","authors":"Onur Kaya, Ömer Yunus Gümüş, Israfil Küçük, S. Aslan","doi":"10.32710/tekstilvekonfeksiyon.1056781","DOIUrl":null,"url":null,"abstract":"The weak bonds between the layers of a part produced by the Fused Deposition Modeling (FDM) method causes damage at an early stage. To overcome the strength problem, FDM parts are manufactured with engineering thermoplastics or reinforced with carbon/glass fiber. Although these studies provided partial improvement on the mechanical strength of the part, the bond strength between the layers was not significantly improved. In this study, we aimed to reduce the negative effect of the weakness in the interlayer bond strength on the strength of the final part. Therefore, a composite laminate was applied on a polylactic acid (PLA) core produced by the FDM method. Weight measurement, tensile test, three-point bending test and weight drop test were performed on the produced test samples. Tensile and bending test results indicates that the composite layer applied on the core produced by the FDM method has a positive effect on the mechanical strength and bending properties. It is concluded that the study will be a source for future research on moldless composite production.","PeriodicalId":22221,"journal":{"name":"Tekstil Ve Konfeksiyon","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tekstil Ve Konfeksiyon","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32710/tekstilvekonfeksiyon.1056781","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

The weak bonds between the layers of a part produced by the Fused Deposition Modeling (FDM) method causes damage at an early stage. To overcome the strength problem, FDM parts are manufactured with engineering thermoplastics or reinforced with carbon/glass fiber. Although these studies provided partial improvement on the mechanical strength of the part, the bond strength between the layers was not significantly improved. In this study, we aimed to reduce the negative effect of the weakness in the interlayer bond strength on the strength of the final part. Therefore, a composite laminate was applied on a polylactic acid (PLA) core produced by the FDM method. Weight measurement, tensile test, three-point bending test and weight drop test were performed on the produced test samples. Tensile and bending test results indicates that the composite layer applied on the core produced by the FDM method has a positive effect on the mechanical strength and bending properties. It is concluded that the study will be a source for future research on moldless composite production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D打印聚乳酸作为芯材在碳纤维织物复合材料成型中的应用
熔融沉积建模(FDM)方法产生的零件层之间的弱键在早期阶段导致损伤。为了克服强度问题,FDM零件采用工程热塑性塑料制造或用碳/玻璃纤维增强。虽然这些研究对零件的机械强度有一定的提高,但层间的结合强度并没有明显的提高。在本研究中,我们的目的是减少层间结合强度的弱点对最终零件强度的负面影响。因此,将复合层压板应用于FDM法生产的聚乳酸(PLA)芯上。对生产的试样进行称重、拉伸试验、三点弯曲试验和失重试验。拉伸和弯曲试验结果表明,在FDM法生产的芯材上涂覆复合材料层对芯材的机械强度和弯曲性能都有积极的影响。研究结果为今后无模复合材料的研究提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tekstil Ve Konfeksiyon
Tekstil Ve Konfeksiyon 工程技术-材料科学:纺织
CiteScore
1.40
自引率
33.30%
发文量
41
审稿时长
>12 weeks
期刊介绍: Tekstil ve Konfeksiyon, publishes papers on both fundamental and applied research in various branches of apparel and textile technology and allied areas such as production and properties of natural and synthetic fibers, yarns and fabrics, technical textiles, finishing applications, garment technology, analysis, testing, and quality control.
期刊最新文献
Application of Neural Network for the Prediction of Loss in Mechanical Properties of Aramid Fabrics After Thermal Aging COMFORT PROPERTIES OF SPACER FABRICS FROM SUSTAINABLE FIBERS FOR SPORTSWEAR APPLICATIONS Effect of UV Exposure on the Mechanical Properties of Polyurethane-Coated Fabrics Effect of Sewing Thread Properties on Seam Performance of Woven Fabrics Study on Fibre Reinforced Composites Developed by using Recycled Fibres from Garment Cut Waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1