Predictive Maintenance of Lead-Acid Batteries with Sparse Vehicle Operational Data

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-06-04 DOI:10.36001/IJPHM.2020.V11I1.2608
S. Voronov, Mattias Krysander, E. Frisk
{"title":"Predictive Maintenance of Lead-Acid Batteries with Sparse Vehicle Operational Data","authors":"S. Voronov, Mattias Krysander, E. Frisk","doi":"10.36001/IJPHM.2020.V11I1.2608","DOIUrl":null,"url":null,"abstract":"Predictive maintenance aims to predict failures in components of a system, a heavy-duty vehicle in this work, and do maintenance before any actual fault occurs. Predictive maintenance is increasingly important in the automotive industry due to the development of new services and autonomous vehicles with no driver who can notice first signs of a component problem. The lead-acid battery in a heavy vehicle is mostly used during engine starts, but also for heating and cooling the cockpit, and is an important part of the electrical system that is essential for reliable operation. This paper develops and evaluates two machine-learning based methods for battery prognostics, one based on Long Short-Term Memory (LSTM) neural networks and one on Random Survival Forest (RSF). The objective is to estimate time of battery failure based on sparse and non-equidistant vehicle operational data, obtained from workshop visits or over-the-air readouts. The dataset has three characteristics: 1) no sensor measurements are directly related to battery health, 2) the number of data readouts vary from one vehicle to another, and 3) readouts are collected at different time periods. Missing data is common and is addressed by comparing different imputation techniques. RSF- and LSTM-based models are proposed and evaluated for the case of sparse multiple-readouts. How to measure model performance is discussed and how the amount of vehicle information influences performance.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/IJPHM.2020.V11I1.2608","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

Predictive maintenance aims to predict failures in components of a system, a heavy-duty vehicle in this work, and do maintenance before any actual fault occurs. Predictive maintenance is increasingly important in the automotive industry due to the development of new services and autonomous vehicles with no driver who can notice first signs of a component problem. The lead-acid battery in a heavy vehicle is mostly used during engine starts, but also for heating and cooling the cockpit, and is an important part of the electrical system that is essential for reliable operation. This paper develops and evaluates two machine-learning based methods for battery prognostics, one based on Long Short-Term Memory (LSTM) neural networks and one on Random Survival Forest (RSF). The objective is to estimate time of battery failure based on sparse and non-equidistant vehicle operational data, obtained from workshop visits or over-the-air readouts. The dataset has three characteristics: 1) no sensor measurements are directly related to battery health, 2) the number of data readouts vary from one vehicle to another, and 3) readouts are collected at different time periods. Missing data is common and is addressed by comparing different imputation techniques. RSF- and LSTM-based models are proposed and evaluated for the case of sparse multiple-readouts. How to measure model performance is discussed and how the amount of vehicle information influences performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏车辆运行数据的铅酸蓄电池预测性维护
预测性维护的目的是预测系统(重型车辆)部件的故障,并在实际故障发生之前进行维护。由于新服务和自动驾驶汽车的发展,预测性维护在汽车行业变得越来越重要,因为驾驶员无法注意到部件问题的最初迹象。重型车辆中的铅酸电池主要用于发动机启动,但也用于驾驶舱的加热和冷却,是电气系统的重要组成部分,对可靠运行至关重要。本文开发并评估了两种基于机器学习的电池预测方法,一种基于长短期记忆(LSTM)神经网络,另一种基于随机生存森林(RSF)。目标是基于从车间访问或无线读数获得的稀疏和非等距车辆操作数据来估计电池故障时间。该数据集具有三个特征:1)传感器测量值与电池健康状况没有直接关系;2)每辆车的数据读数数量各不相同;3)在不同时间段收集读数。缺失数据是常见的,并通过比较不同的插入技术来解决。提出了基于RSF和lstm的稀疏多读模型,并对其进行了评估。讨论了如何度量模型性能,以及车辆信息量如何影响模型性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1