Chao Wang, D. Evans, Meng Li, Ji-Heng Zhang, Jian Han, Bin Wen, J. Wang, Junming Zhao
{"title":"Proterozoic-Mesozoic development of the Quanji block from northern Tibet and the cratonic assembly of eastern Asia","authors":"Chao Wang, D. Evans, Meng Li, Ji-Heng Zhang, Jian Han, Bin Wen, J. Wang, Junming Zhao","doi":"10.2475/05.2022.03","DOIUrl":null,"url":null,"abstract":"Unraveling the timing, location, and mechanisms of cratonic aggregation in Earth's continental jigsaw puzzle is a key factor for plate tectonic reconstructions. The Quanji Block (QB) is a sliver of anomalously old and well-preserved continental crust embedded within the Paleozoic-Mesozoic tectonic collage of the northeastern Tibetan Plateau and has played a critical role in Proto-/Paleotethys paleogeographic reconstructions. New geological mapping, stratigraphic logging, and geochronological analysis lead to a refined understanding of QB's history from Paleoproterozoic to present. Deposited atop a largely Paleoproterozoic basement, the Quanji Group records rifting and epicratonic cover at 1.7 to 1.6 Ga. The Quanji Group is unconformably overlain by the Xiaogaolu Group, which preserves black shale, Ediacaran-type Charnia, ribbon-shaped fossils and a late Ediacaran glaciation. U-Pb detrital zircon ages from Cambrian Olongbuluke Group marine platform deposits are quite different from ages in underlying units, with a minor component of Neoproterozoic (880–815 Ma) ages. The apparent change in detrital zircon sources coincides with a regionally expressed Great Unconformity during the Precambrian–Cambrian transition. The new stratigraphy and U-Pb geochronology of QB suggest that the late Paleoproterozoic to Cambrian history of QB has a remarkable similarity to that of the southern margin of North China Block (NCB), indicating that the QB has been displaced dextrally from an initial location adjacent to NCB. The transform motion occurred in stages between ca. 350 and 200 Ma, which suggests that transform tectonism appears to be an essential element of any viable model for kinematic development of the Paleo-Tethyan oceanic domains and the ultimate cratonic assembly of eastern Asia.","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2475/05.2022.03","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Unraveling the timing, location, and mechanisms of cratonic aggregation in Earth's continental jigsaw puzzle is a key factor for plate tectonic reconstructions. The Quanji Block (QB) is a sliver of anomalously old and well-preserved continental crust embedded within the Paleozoic-Mesozoic tectonic collage of the northeastern Tibetan Plateau and has played a critical role in Proto-/Paleotethys paleogeographic reconstructions. New geological mapping, stratigraphic logging, and geochronological analysis lead to a refined understanding of QB's history from Paleoproterozoic to present. Deposited atop a largely Paleoproterozoic basement, the Quanji Group records rifting and epicratonic cover at 1.7 to 1.6 Ga. The Quanji Group is unconformably overlain by the Xiaogaolu Group, which preserves black shale, Ediacaran-type Charnia, ribbon-shaped fossils and a late Ediacaran glaciation. U-Pb detrital zircon ages from Cambrian Olongbuluke Group marine platform deposits are quite different from ages in underlying units, with a minor component of Neoproterozoic (880–815 Ma) ages. The apparent change in detrital zircon sources coincides with a regionally expressed Great Unconformity during the Precambrian–Cambrian transition. The new stratigraphy and U-Pb geochronology of QB suggest that the late Paleoproterozoic to Cambrian history of QB has a remarkable similarity to that of the southern margin of North China Block (NCB), indicating that the QB has been displaced dextrally from an initial location adjacent to NCB. The transform motion occurred in stages between ca. 350 and 200 Ma, which suggests that transform tectonism appears to be an essential element of any viable model for kinematic development of the Paleo-Tethyan oceanic domains and the ultimate cratonic assembly of eastern Asia.
期刊介绍:
The American Journal of Science (AJS), founded in 1818 by Benjamin Silliman, is the oldest scientific journal in the United States that has been published continuously. The Journal is devoted to geology and related sciences and publishes articles from around the world presenting results of major research from all earth sciences. Readers are primarily earth scientists in academia and government institutions.