Jason W. Burton, Mari-Klara Stein, Tina Blegind Jensen
{"title":"A systematic review of algorithm aversion in augmented decision making","authors":"Jason W. Burton, Mari-Klara Stein, Tina Blegind Jensen","doi":"10.1002/bdm.2155","DOIUrl":null,"url":null,"abstract":"<p>Despite abundant literature theorizing societal implications of algorithmic decision making, relatively little is known about the conditions that lead to the acceptance or rejection of algorithmically generated insights by individual users of decision aids. More specifically, recent findings of algorithm aversion—the reluctance of human forecasters to use superior but imperfect algorithms—raise questions about whether joint human-algorithm decision making is feasible in practice. In this paper, we systematically review the topic of algorithm aversion as it appears in 61 peer-reviewed articles between 1950 and 2018 and follow its conceptual trail across disciplines. We categorize and report on the proposed causes and solutions of algorithm aversion in five themes: expectations and expertise, decision autonomy, incentivization, cognitive compatibility, and divergent rationalities. Although each of the presented themes addresses distinct features of an algorithmic decision aid, human users of the decision aid, and/or the decision making environment, apparent interdependencies are highlighted. We conclude that resolving algorithm aversion requires an updated research program with an emphasis on theory integration. We provide a number of empirical questions that can be immediately carried forth by the behavioral decision making community.</p>","PeriodicalId":48112,"journal":{"name":"Journal of Behavioral Decision Making","volume":"33 2","pages":"220-239"},"PeriodicalIF":1.4000,"publicationDate":"2019-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/bdm.2155","citationCount":"220","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Behavioral Decision Making","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdm.2155","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
引用次数: 220
Abstract
Despite abundant literature theorizing societal implications of algorithmic decision making, relatively little is known about the conditions that lead to the acceptance or rejection of algorithmically generated insights by individual users of decision aids. More specifically, recent findings of algorithm aversion—the reluctance of human forecasters to use superior but imperfect algorithms—raise questions about whether joint human-algorithm decision making is feasible in practice. In this paper, we systematically review the topic of algorithm aversion as it appears in 61 peer-reviewed articles between 1950 and 2018 and follow its conceptual trail across disciplines. We categorize and report on the proposed causes and solutions of algorithm aversion in five themes: expectations and expertise, decision autonomy, incentivization, cognitive compatibility, and divergent rationalities. Although each of the presented themes addresses distinct features of an algorithmic decision aid, human users of the decision aid, and/or the decision making environment, apparent interdependencies are highlighted. We conclude that resolving algorithm aversion requires an updated research program with an emphasis on theory integration. We provide a number of empirical questions that can be immediately carried forth by the behavioral decision making community.
期刊介绍:
The Journal of Behavioral Decision Making is a multidisciplinary journal with a broad base of content and style. It publishes original empirical reports, critical review papers, theoretical analyses and methodological contributions. The Journal also features book, software and decision aiding technique reviews, abstracts of important articles published elsewhere and teaching suggestions. The objective of the Journal is to present and stimulate behavioral research on decision making and to provide a forum for the evaluation of complementary, contrasting and conflicting perspectives. These perspectives include psychology, management science, sociology, political science and economics. Studies of behavioral decision making in naturalistic and applied settings are encouraged.