{"title":"An efficient analytical model for the swept volume generation of a flat-end mill in 5-axis CNC milling","authors":"Ahmet Dogrusadik","doi":"10.1016/j.cagd.2023.102241","DOIUrl":null,"url":null,"abstract":"<div><p>5-axis CNC (Computer Numerical Control) milling is widely used to create complex part geometries in the industrial area. The cutting tool creates the swept volume as it moves along the defined path. The swept volume is subtracted from the initial stock for the machining simulation. Although a swept volume consists of three parts such as ingress, egress, and swept envelope, the number of faces of the swept volume is higher than three. In this work, parametric equations<span> of the faces of the swept volume were obtained for a flat-end mill in four steps. The model is based on the decomposition of the tool into circles along the tool orientation vector<span> since a flat-end mill can be modeled as a cylinder. The fundamental principle is that each circle is tangent to the swept envelope of the cylinder. Locations of the grazing points with respect to a local coordinate system were determined by applying the Envelope Theory to the parameterized circle of the cylinder. Then, each face of the swept volume was represented based on the equation of the parameterized circle. The model was verified by using an alternative analytical model. As a result, boundaries of the swept volume were represented fully analytically for a flat-end mill in 5-axis CNC milling in an efficient way.</span></span></p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"106 ","pages":"Article 102241"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839623000730","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
5-axis CNC (Computer Numerical Control) milling is widely used to create complex part geometries in the industrial area. The cutting tool creates the swept volume as it moves along the defined path. The swept volume is subtracted from the initial stock for the machining simulation. Although a swept volume consists of three parts such as ingress, egress, and swept envelope, the number of faces of the swept volume is higher than three. In this work, parametric equations of the faces of the swept volume were obtained for a flat-end mill in four steps. The model is based on the decomposition of the tool into circles along the tool orientation vector since a flat-end mill can be modeled as a cylinder. The fundamental principle is that each circle is tangent to the swept envelope of the cylinder. Locations of the grazing points with respect to a local coordinate system were determined by applying the Envelope Theory to the parameterized circle of the cylinder. Then, each face of the swept volume was represented based on the equation of the parameterized circle. The model was verified by using an alternative analytical model. As a result, boundaries of the swept volume were represented fully analytically for a flat-end mill in 5-axis CNC milling in an efficient way.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.