Efficient Fabrication of Quartz Glass Using Laser Coaxial Powder-Fed Additive Manufacturing Approach.

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-01 Epub Date: 2024-04-16 DOI:10.1089/3dp.2022.0137
Ming Lang, Xiao-Li Ruan, Chong He, Zhi-Qiang Chen, Tao Xu, Hai-Bin Zhang, Yun-Tao Cheng
{"title":"Efficient Fabrication of Quartz Glass Using Laser Coaxial Powder-Fed Additive Manufacturing Approach.","authors":"Ming Lang, Xiao-Li Ruan, Chong He, Zhi-Qiang Chen, Tao Xu, Hai-Bin Zhang, Yun-Tao Cheng","doi":"10.1089/3dp.2022.0137","DOIUrl":null,"url":null,"abstract":"<p><p>This article investigates a laser-directed energy deposition additive manufacturing (AM) method, based on coaxial powder feeding, for preparing quartz glass. Through synergistic optimization of line deposition and plane deposition experiments, key parameters of laser coaxial powder feeding AM were identified. The corresponding mechanical properties, thermal properties, and microstructure of the bulk parts were analyzed. The maximum mechanical strength of the obtained quartz glass element reached 72.36 ± 5.98 MPa, which is ca. 95% that of quartz glass prepared by traditional methods. The thermal properties of the obtained quartz glass element were also close to those prepared by traditional methods. The present research indicates that one can use laser AM technology that is based on coaxial powder feeding to form quartz glass with high density and good thermodynamic properties. Such quartz glass has substantial potential in, for example, optics and biomedicine.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"e655-e665"},"PeriodicalIF":4.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057532/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates a laser-directed energy deposition additive manufacturing (AM) method, based on coaxial powder feeding, for preparing quartz glass. Through synergistic optimization of line deposition and plane deposition experiments, key parameters of laser coaxial powder feeding AM were identified. The corresponding mechanical properties, thermal properties, and microstructure of the bulk parts were analyzed. The maximum mechanical strength of the obtained quartz glass element reached 72.36 ± 5.98 MPa, which is ca. 95% that of quartz glass prepared by traditional methods. The thermal properties of the obtained quartz glass element were also close to those prepared by traditional methods. The present research indicates that one can use laser AM technology that is based on coaxial powder feeding to form quartz glass with high density and good thermodynamic properties. Such quartz glass has substantial potential in, for example, optics and biomedicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光同轴粉末增材制造方法高效制备石英玻璃
本文研究了一种基于同轴送粉的激光定向能量沉积增材制造(AM)方法,用于制备石英玻璃。通过线沉积和平面沉积实验的协同优化,确定了激光同轴送粉增材制造的关键参数。分析了相应的机械性能、热性能和块体部件的微观结构。获得的石英玻璃元件的最大机械强度达到 72.36 ± 5.98 MPa,约为传统方法制备的石英玻璃的 95%。获得的石英玻璃元件的热性能也与传统方法制备的石英玻璃元件接近。本研究表明,可以利用基于同轴粉末进给的激光 AM 技术来形成具有高密度和良好热力学性质的石英玻璃。这种石英玻璃在光学和生物医学等领域具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
An Injectable Hybrid Gelatin Methacryloyl/Polydopamine Nanoparticle Bioink for Rapid Hemostasis Applications. Integrated Microfluidic Technologies for Circulating Tumor Cells Detection in Biological Matrices. Quinone-Based Mediator Immobilized Mesoporous Electrodes for Bioelectrocatalysis of Glucose Dehydrogenase. Annealing of pDNA to Form the Single-Nucleobase-Terminal Complex for In Vivo Gene Expression. Development of a pH-Responsive Nanoantibiotic Hydrogel System Based on PVA/Pectin and Biomass-Derived Bacterial Nanocellulose for Antibacterial Wound Dressings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1