Modeling of Jakarta Islamic Index Stock Volatility Return Pattern with Garch Model

Altijary Pub Date : 2020-12-31 DOI:10.21093/AT.V6I1.2468
Faizul Mubarok, M. Bisma
{"title":"Modeling of Jakarta Islamic Index Stock Volatility Return Pattern with Garch Model","authors":"Faizul Mubarok, M. Bisma","doi":"10.21093/AT.V6I1.2468","DOIUrl":null,"url":null,"abstract":"Along with the large number of investors transacting on Islamic stocks, the movement of stock prices becomes more volatile. The purpose of this research is to examine the behavior of volatility patterns in shares incorporated in the Jakarta Islamic Index using the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model. This study uses daily data from six stocks contained in the Jakarta Islamic Index during the period January 1, 2009, to December 31, 2019. Data volatility is seen using the GARCH model. Estimation results for daily data show that the volatility of ASII, SMGR, TLKM, UNTR, and UNVR shares is influenced by the error and return volatility of the previous day. This is indicated by the GARCH effect on each regression result. The results of the study are beneficial for an investor, and if you want to invest with a low level of risk, you can choose TLKM shares. But if you're going to get a high level of return, you can invest in UNTR shares. For securities analysis, you can use the GARCH model that has been tested to predict volatility in the Jakarta Islamic Index.","PeriodicalId":31300,"journal":{"name":"Altijary","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Altijary","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21093/AT.V6I1.2468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Along with the large number of investors transacting on Islamic stocks, the movement of stock prices becomes more volatile. The purpose of this research is to examine the behavior of volatility patterns in shares incorporated in the Jakarta Islamic Index using the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model. This study uses daily data from six stocks contained in the Jakarta Islamic Index during the period January 1, 2009, to December 31, 2019. Data volatility is seen using the GARCH model. Estimation results for daily data show that the volatility of ASII, SMGR, TLKM, UNTR, and UNVR shares is influenced by the error and return volatility of the previous day. This is indicated by the GARCH effect on each regression result. The results of the study are beneficial for an investor, and if you want to invest with a low level of risk, you can choose TLKM shares. But if you're going to get a high level of return, you can invest in UNTR shares. For securities analysis, you can use the GARCH model that has been tested to predict volatility in the Jakarta Islamic Index.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用Garch模型建模雅加达伊斯兰指数股票波动率收益模式
随着大量投资者对伊斯兰股票进行交易,股价的波动也变得更加剧烈。本研究的目的是利用广义自回归条件异方差(GARCH)模型检验雅加达伊斯兰指数纳入股票的波动模式行为。本研究使用了2009年1月1日至2019年12月31日期间雅加达伊斯兰指数中6只股票的每日数据。使用GARCH模型可以看到数据波动。每日数据的估计结果表明,ASII、SMGR、TLKM、UNTR和UNVR股票的波动率受到前一天误差和收益波动率的影响。GARCH对每个回归结果的影响表明了这一点。研究结果对投资者来说是有益的,如果你想以低风险水平投资,你可以选择TLKM股票。但如果你想获得高回报,你可以投资UNTR的股票。对于证券分析,您可以使用GARCH模型,该模型已经过测试,以预测雅加达伊斯兰指数的波动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
期刊最新文献
Factors That Affect the Realization of MSME Financing at Sharia Bankaltimtara Samarinda GoFood Vs ShopeeFood: Manakah yang Menjadi Pilihan Generasi Z? COVID-19 dan Pasar Modal Syariah: Pendekatan Regresi Korelasi Kanonikal Panic Buying as a Cause of Inflation According to al-Maqrizi's Perspective Dampak Covid-19 terhadap Perekonomian Masyarakat Ditinjau dari Perspektif Ekonomi Syariah
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1