J. Ramírez-Angulo, Anindita Paul, Manaswini Gangineni, José Hinojo-Montero, J. Huerta-Chua
{"title":"Class AB Voltage Follower and Low-Voltage Current Mirror with Very High Figures of Merit Based on the Flipped Voltage Follower","authors":"J. Ramírez-Angulo, Anindita Paul, Manaswini Gangineni, José Hinojo-Montero, J. Huerta-Chua","doi":"10.3390/jlpea13020028","DOIUrl":null,"url":null,"abstract":"The application of the flipped voltage follower to implement two high-performance circuits is presented: (1) The first is a class AB cascode flipped voltage follower that shows an improved slew rate and an improved bandwidth by very large factors and that has a higher output range than the conventional flipped voltage follower. It has a small signal figure of merit FOMSS = 46 MHz pF/µW and a current efficiency figure of merit FOMCE = 118. This is achieved by just introducing an additional output current sourcing PMOS transistor (P-channel Metal Oxide Semiconductor Field Effect Transistor) that provides dynamic output current enhancement and increases the quiescent power dissipation by less than 10%. (2) The other is a high-performance low-voltage current mirror with a nominal gain accuracy better than 0.01%, 0.212 Ω input resistance, 112 GΩ output resistance, 1 V supply voltage requirements, 0.15 V input, and 0.2 V output compliance voltages. These characteristics are achieved by utilizing two auxiliary amplifiers and a level shifter that increase the power dissipation just moderately. Post-layout simulations verify the performance of the circuits in a commercial 180 nm CMOS (Complementary Metal Oxide Semiconductor) technology.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea13020028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The application of the flipped voltage follower to implement two high-performance circuits is presented: (1) The first is a class AB cascode flipped voltage follower that shows an improved slew rate and an improved bandwidth by very large factors and that has a higher output range than the conventional flipped voltage follower. It has a small signal figure of merit FOMSS = 46 MHz pF/µW and a current efficiency figure of merit FOMCE = 118. This is achieved by just introducing an additional output current sourcing PMOS transistor (P-channel Metal Oxide Semiconductor Field Effect Transistor) that provides dynamic output current enhancement and increases the quiescent power dissipation by less than 10%. (2) The other is a high-performance low-voltage current mirror with a nominal gain accuracy better than 0.01%, 0.212 Ω input resistance, 112 GΩ output resistance, 1 V supply voltage requirements, 0.15 V input, and 0.2 V output compliance voltages. These characteristics are achieved by utilizing two auxiliary amplifiers and a level shifter that increase the power dissipation just moderately. Post-layout simulations verify the performance of the circuits in a commercial 180 nm CMOS (Complementary Metal Oxide Semiconductor) technology.