Pattern-based Interactive Configuration Derivation for Cyber-physical System Product Lines

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS ACM Transactions on Cyber-Physical Systems Pub Date : 2020-06-18 DOI:10.1145/3389397
Hong Lu, T. Yue, Shaukat Ali
{"title":"Pattern-based Interactive Configuration Derivation for Cyber-physical System Product Lines","authors":"Hong Lu, T. Yue, Shaukat Ali","doi":"10.1145/3389397","DOIUrl":null,"url":null,"abstract":"Deriving a Cyber-Physical System (CPS) product from a product line requires configuring hundreds to thousands of configurable parameters of components and devices from multiple domains, e.g., computing, control, and communication. A fully automated configuration process for a CPS product line is seldom possible in practice, and a dynamic and interactive process is expected. Therefore, some configurable parameters are to be configured manually, and the rest can be configured either automatically or manually, depending on pre-defined constraints, the order of configuration steps, and previous configuration data in such a dynamic and interactive configuration process. In this article, we propose a pattern-based, interactive configuration derivation methodology (named as Pi-CD) to maximize opportunities of automatically deriving correct configurations of CPSs by benefiting from pre-defined constraints and configuration data of previous configuration steps. Pi-CD requires architectures of CPS product lines modeled with Unified Modeling Language extended with four types of variabilities, along with constraints specified in Object Constraint Language (OCL). Pi-CD is equipped with 324 configuration derivation patterns that we defined by systematically analyzing the OCL constructs and semantics. We evaluated Pi-CD by configuring 20 CPS products of varying complexity from two real-world CPS product lines. Results show that Pi-CD can achieve up to 72% automation degree with a negligible time cost. Moreover, its time performance remains stable with the increase in the number of configuration parameters as well as constraints.","PeriodicalId":7055,"journal":{"name":"ACM Transactions on Cyber-Physical Systems","volume":"4 1","pages":"1 - 24"},"PeriodicalIF":2.0000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3389397","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3389397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

Deriving a Cyber-Physical System (CPS) product from a product line requires configuring hundreds to thousands of configurable parameters of components and devices from multiple domains, e.g., computing, control, and communication. A fully automated configuration process for a CPS product line is seldom possible in practice, and a dynamic and interactive process is expected. Therefore, some configurable parameters are to be configured manually, and the rest can be configured either automatically or manually, depending on pre-defined constraints, the order of configuration steps, and previous configuration data in such a dynamic and interactive configuration process. In this article, we propose a pattern-based, interactive configuration derivation methodology (named as Pi-CD) to maximize opportunities of automatically deriving correct configurations of CPSs by benefiting from pre-defined constraints and configuration data of previous configuration steps. Pi-CD requires architectures of CPS product lines modeled with Unified Modeling Language extended with four types of variabilities, along with constraints specified in Object Constraint Language (OCL). Pi-CD is equipped with 324 configuration derivation patterns that we defined by systematically analyzing the OCL constructs and semantics. We evaluated Pi-CD by configuring 20 CPS products of varying complexity from two real-world CPS product lines. Results show that Pi-CD can achieve up to 72% automation degree with a negligible time cost. Moreover, its time performance remains stable with the increase in the number of configuration parameters as well as constraints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模式的信息物理系统产品线交互配置派生
从产品线衍生网络物理系统(CPS)产品需要从多个领域配置数百到数千个组件和设备的可配置参数,例如计算、控制和通信。CPS产品线的完全自动化配置过程在实践中是不可能的,并且需要一个动态和交互式的过程。因此,在这种动态和交互式配置过程中,根据预定义的约束、配置步骤的顺序和先前的配置数据,一些可配置参数将手动配置,其余参数可以自动或手动配置。在本文中,我们提出了一种基于模式的交互式配置推导方法(称为Pi-CD),通过受益于先前配置步骤的预定义约束和配置数据,最大限度地提高自动推导CPSs正确配置的机会。Pi-CD需要使用统一建模语言建模的CPS产品线架构,该语言扩展了四种类型的变量,以及对象约束语言(OCL)中指定的约束。Pi-CD配备了324个配置派生模式,我们通过系统分析OCL结构和语义来定义这些模式。我们通过从两条真实世界的CPS产品线中配置20种不同复杂性的CPS产品来评估Pi-CD。结果表明,Pi-CD可以在可忽略的时间成本下实现高达72%的自动化程度。此外,随着配置参数和约束数量的增加,其时间性能保持稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Cyber-Physical Systems
ACM Transactions on Cyber-Physical Systems COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.70
自引率
4.30%
发文量
40
期刊最新文献
On Cyber-Physical Fault Resilience in Data Communication: A Case From A LoRaWAN Network Systems Design DistressNet-NG: A Resilient Data Storage and Sharing Framework for Mobile Edge Computing in Cyber-Physical Systems A Blockchain Architecture to Increase the Resilience of Industrial Control Systems from the Effects of a Ransomware Attack: A Proposal and Initial Results A Combinatorial Optimization Analysis Method for Detecting Malicious Industrial Internet Attack Behaviors Statistical Verification using Surrogate Models and Conformal Inference and a Comparison with Risk-aware Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1