{"title":"Pattern-based Interactive Configuration Derivation for Cyber-physical System Product Lines","authors":"Hong Lu, T. Yue, Shaukat Ali","doi":"10.1145/3389397","DOIUrl":null,"url":null,"abstract":"Deriving a Cyber-Physical System (CPS) product from a product line requires configuring hundreds to thousands of configurable parameters of components and devices from multiple domains, e.g., computing, control, and communication. A fully automated configuration process for a CPS product line is seldom possible in practice, and a dynamic and interactive process is expected. Therefore, some configurable parameters are to be configured manually, and the rest can be configured either automatically or manually, depending on pre-defined constraints, the order of configuration steps, and previous configuration data in such a dynamic and interactive configuration process. In this article, we propose a pattern-based, interactive configuration derivation methodology (named as Pi-CD) to maximize opportunities of automatically deriving correct configurations of CPSs by benefiting from pre-defined constraints and configuration data of previous configuration steps. Pi-CD requires architectures of CPS product lines modeled with Unified Modeling Language extended with four types of variabilities, along with constraints specified in Object Constraint Language (OCL). Pi-CD is equipped with 324 configuration derivation patterns that we defined by systematically analyzing the OCL constructs and semantics. We evaluated Pi-CD by configuring 20 CPS products of varying complexity from two real-world CPS product lines. Results show that Pi-CD can achieve up to 72% automation degree with a negligible time cost. Moreover, its time performance remains stable with the increase in the number of configuration parameters as well as constraints.","PeriodicalId":7055,"journal":{"name":"ACM Transactions on Cyber-Physical Systems","volume":"4 1","pages":"1 - 24"},"PeriodicalIF":2.0000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3389397","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3389397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
Deriving a Cyber-Physical System (CPS) product from a product line requires configuring hundreds to thousands of configurable parameters of components and devices from multiple domains, e.g., computing, control, and communication. A fully automated configuration process for a CPS product line is seldom possible in practice, and a dynamic and interactive process is expected. Therefore, some configurable parameters are to be configured manually, and the rest can be configured either automatically or manually, depending on pre-defined constraints, the order of configuration steps, and previous configuration data in such a dynamic and interactive configuration process. In this article, we propose a pattern-based, interactive configuration derivation methodology (named as Pi-CD) to maximize opportunities of automatically deriving correct configurations of CPSs by benefiting from pre-defined constraints and configuration data of previous configuration steps. Pi-CD requires architectures of CPS product lines modeled with Unified Modeling Language extended with four types of variabilities, along with constraints specified in Object Constraint Language (OCL). Pi-CD is equipped with 324 configuration derivation patterns that we defined by systematically analyzing the OCL constructs and semantics. We evaluated Pi-CD by configuring 20 CPS products of varying complexity from two real-world CPS product lines. Results show that Pi-CD can achieve up to 72% automation degree with a negligible time cost. Moreover, its time performance remains stable with the increase in the number of configuration parameters as well as constraints.