{"title":"An experimental study into the fault recognition of onboard systems by navigational officers","authors":"Jevon P. Chan, K. Pazouki, R. Norman","doi":"10.1080/20464177.2022.2143312","DOIUrl":null,"url":null,"abstract":"Autonomy has allowed the maritime industry to design integrated systems leading to the concept of maritime autonomous surface ships. As research towards autonomous operations increases seafarers must be equipped with the knowledge of how to react to onboard system faults and threats to the safety of crew, vessel and cargo. Consequently, the maritime industry may utilise bridge simulators to train seafarers in autonomous operations. By integrating simulation into navigational officer training, it is possible to aid the development of seafarers fault recognition patterns. Moreover, simulation training can provide seafarers with the knowledge to be proactive in fault finding over reactive. Therefore, this study is conducted in a navigational simulator and investigates the fault recognition patterns of seafarers during realistic watch conditions with alternative tasks i.e. paperwork. Moreover, a novel Event Tree Analysis method is proposed to analyse the performance of seafarers and effectiveness of human machine relationship. The study found a low percentage of candidates successfully reacted to all faults and without additional alarms the vessel may have resulted in further danger. Applying the methodology and data assimilated from the study could aid the development of navigational officer short courses, developing seafarers behavioural skills which complement their technical talents.","PeriodicalId":50152,"journal":{"name":"Journal of Marine Engineering and Technology","volume":"22 1","pages":"101 - 110"},"PeriodicalIF":2.6000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/20464177.2022.2143312","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4
Abstract
Autonomy has allowed the maritime industry to design integrated systems leading to the concept of maritime autonomous surface ships. As research towards autonomous operations increases seafarers must be equipped with the knowledge of how to react to onboard system faults and threats to the safety of crew, vessel and cargo. Consequently, the maritime industry may utilise bridge simulators to train seafarers in autonomous operations. By integrating simulation into navigational officer training, it is possible to aid the development of seafarers fault recognition patterns. Moreover, simulation training can provide seafarers with the knowledge to be proactive in fault finding over reactive. Therefore, this study is conducted in a navigational simulator and investigates the fault recognition patterns of seafarers during realistic watch conditions with alternative tasks i.e. paperwork. Moreover, a novel Event Tree Analysis method is proposed to analyse the performance of seafarers and effectiveness of human machine relationship. The study found a low percentage of candidates successfully reacted to all faults and without additional alarms the vessel may have resulted in further danger. Applying the methodology and data assimilated from the study could aid the development of navigational officer short courses, developing seafarers behavioural skills which complement their technical talents.
期刊介绍:
The Journal of Marine Engineering and Technology will publish papers concerned with scientific and theoretical research applied to all aspects of marine engineering and technology in addition to issues associated with the application of technology in the marine environment. The areas of interest will include:
• Fuel technology and Combustion
• Power and Propulsion Systems
• Noise and vibration
• Offshore and Underwater Technology
• Computing, IT and communication
• Pumping and Pipeline Engineering
• Safety and Environmental Assessment
• Electrical and Electronic Systems and Machines
• Vessel Manoeuvring and Stabilisation
• Tribology and Power Transmission
• Dynamic modelling, System Simulation and Control
• Heat Transfer, Energy Conversion and Use
• Renewable Energy and Sustainability
• Materials and Corrosion
• Heat Engine Development
• Green Shipping
• Hydrography
• Subsea Operations
• Cargo Handling and Containment
• Pollution Reduction
• Navigation
• Vessel Management
• Decommissioning
• Salvage Procedures
• Legislation
• Ship and floating structure design
• Robotics Salvage Procedures
• Structural Integrity Cargo Handling and Containment
• Marine resource and acquisition
• Risk Analysis Robotics
• Maintenance and Inspection Planning Vessel Management
• Marine security
• Risk Analysis
• Legislation
• Underwater Vehicles
• Plant and Equipment
• Structural Integrity
• Installation and Repair
• Plant and Equipment
• Maintenance and Inspection Planning.