{"title":"Rheo-electric measurements of carbon black suspensions containing polyvinylidene difluoride in N-methyl-2-pyrrolidone","authors":"Qingsong Liu, J. J. Richards","doi":"10.1122/8.0000615","DOIUrl":null,"url":null,"abstract":"Lithium-ion battery cathode slurries have a microstructure that depends sensitively on how they are processed due to carbon black's (CB) evolving structure when subjected coating flows. While polyvinylidene difluoride (PVDF), one of the main components of the cathode slurry, plays an important role in modifying the structure and rheology of CB, a quantitative understanding is lacking. In this work, we explore the role of PVDF in determining the structural evolution of Super C65 CB in N-methyl-2-pyrrolidinone (NMP) with rheo-electric measurements. We find that PVDF enhances the viscosity of NMP resulting in a more extensive structural erosion of CB agglomerates with increasing polymer concentration and molecular weight. We also show that the relative viscosity of all suspensions can be collapsed by the fluid Mason number [Formula: see text], which compares the hydrodynamic forces imposed by the medium to cohesive forces holding CB agglomerates together. Using simultaneous rheo-electric measurements, we find at high [Formula: see text], the dielectric strength [Formula: see text] scales with [Formula: see text], and the power-law scaling can be quantitatively predicted by considering the self-similar break up of CB agglomerates. The collapse of the relative viscosity and scaling of [Formula: see text] both suggest that PVDF increases the hydrodynamic force of the suspending medium without directly changing the CB agglomerate structure. These findings are valuable for optimizing the rheology of lithium ion battery cathode slurries. We also anticipate that these findings can be extended to understand the microstructure of similar systems under flow.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000615","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
Lithium-ion battery cathode slurries have a microstructure that depends sensitively on how they are processed due to carbon black's (CB) evolving structure when subjected coating flows. While polyvinylidene difluoride (PVDF), one of the main components of the cathode slurry, plays an important role in modifying the structure and rheology of CB, a quantitative understanding is lacking. In this work, we explore the role of PVDF in determining the structural evolution of Super C65 CB in N-methyl-2-pyrrolidinone (NMP) with rheo-electric measurements. We find that PVDF enhances the viscosity of NMP resulting in a more extensive structural erosion of CB agglomerates with increasing polymer concentration and molecular weight. We also show that the relative viscosity of all suspensions can be collapsed by the fluid Mason number [Formula: see text], which compares the hydrodynamic forces imposed by the medium to cohesive forces holding CB agglomerates together. Using simultaneous rheo-electric measurements, we find at high [Formula: see text], the dielectric strength [Formula: see text] scales with [Formula: see text], and the power-law scaling can be quantitatively predicted by considering the self-similar break up of CB agglomerates. The collapse of the relative viscosity and scaling of [Formula: see text] both suggest that PVDF increases the hydrodynamic force of the suspending medium without directly changing the CB agglomerate structure. These findings are valuable for optimizing the rheology of lithium ion battery cathode slurries. We also anticipate that these findings can be extended to understand the microstructure of similar systems under flow.
期刊介绍:
The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.