{"title":"Genome editing in plants","authors":"Naoki Wada , Keishi Osakabe , Yuriko Osakabe","doi":"10.1016/j.ggedit.2022.100020","DOIUrl":null,"url":null,"abstract":"<div><p>Genome editing technologies have brought dramatic changes in many fields of research, including plant sciences. Zinc finger nuclease, transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) are key players in genome editing and have been developed for targeted mutagenesis. To apply genome editing to plants, optimization and development of several technologies to overcome plant-specific hurdles has been required. In this review, we highlight recent topics in the plant genome editing field in Japan, ranging from the development of a new genome editing tool to commercial applications of genome edited plants. Such achievements contribute greatly to the development of plant genome research and its application to plant breeding.</p></div>","PeriodicalId":73137,"journal":{"name":"Gene and genome editing","volume":"3 ","pages":"Article 100020"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666388022000107/pdfft?md5=994fcd84b17d28de9b321bfb3958f99a&pid=1-s2.0-S2666388022000107-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene and genome editing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666388022000107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Genome editing technologies have brought dramatic changes in many fields of research, including plant sciences. Zinc finger nuclease, transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) are key players in genome editing and have been developed for targeted mutagenesis. To apply genome editing to plants, optimization and development of several technologies to overcome plant-specific hurdles has been required. In this review, we highlight recent topics in the plant genome editing field in Japan, ranging from the development of a new genome editing tool to commercial applications of genome edited plants. Such achievements contribute greatly to the development of plant genome research and its application to plant breeding.