{"title":"Astaxanthin Ameliorates Atopic Dermatitis by Inhibiting the Expression of Signal Molecule NF-kB and Inflammatory Genes in Mice","authors":"Donghwan Kim, Yong-Suk Kim, H. Song","doi":"10.13045/jar.2022.00255","DOIUrl":null,"url":null,"abstract":"Background: This study was conducted to determine the anti-inflammatory effect of astaxanthin, on atopic dermatitis.Methods: Changes in mouse body weight, lymph node weight, and the degree of improvement in symptoms were measured to determine the inflammatory response. Real-time reverse transcription-polymerase chain reaction tests were performed to determine the degree of expression of inflammation-related cytokines (IL-31 and IL-33 and chemokines such as CCL17 and CCL22), and western blot analysis was performed to evaluate the expression of inflammation-related factors (iNOS, COX-2, and NF-kB signaling molecules p-IkBα, p50, p-65 and pSTAT3).Results: The degree of symptoms significantly improved in the PA+AX group. Lymph node weight in the PA+AX group was lower than the PA group. Inflammatory cytokines (IL-31, IL-33, and inflammatory chemokines such as CCL17 and CCL22) were significantly reduced in the PA+AX group compared with the PA group. The expression of inflammatory genes (iNOS, COX-2, NF-kB and signaling molecules (p-IkBα, p50, p65, and p-STAT 3) was lower in the PA+AX group compared with the PA group.Conclusion: Astaxanthin may modulate the inflammatory response in a mouse model of atopic dermatitis and has an anti-inflammatory effect.","PeriodicalId":33306,"journal":{"name":"Journal of Acupuncture Research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Acupuncture Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13045/jar.2022.00255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Background: This study was conducted to determine the anti-inflammatory effect of astaxanthin, on atopic dermatitis.Methods: Changes in mouse body weight, lymph node weight, and the degree of improvement in symptoms were measured to determine the inflammatory response. Real-time reverse transcription-polymerase chain reaction tests were performed to determine the degree of expression of inflammation-related cytokines (IL-31 and IL-33 and chemokines such as CCL17 and CCL22), and western blot analysis was performed to evaluate the expression of inflammation-related factors (iNOS, COX-2, and NF-kB signaling molecules p-IkBα, p50, p-65 and pSTAT3).Results: The degree of symptoms significantly improved in the PA+AX group. Lymph node weight in the PA+AX group was lower than the PA group. Inflammatory cytokines (IL-31, IL-33, and inflammatory chemokines such as CCL17 and CCL22) were significantly reduced in the PA+AX group compared with the PA group. The expression of inflammatory genes (iNOS, COX-2, NF-kB and signaling molecules (p-IkBα, p50, p65, and p-STAT 3) was lower in the PA+AX group compared with the PA group.Conclusion: Astaxanthin may modulate the inflammatory response in a mouse model of atopic dermatitis and has an anti-inflammatory effect.