Eliza Bliss-Moreau, Vincent D Costa, Mark G Baxter
{"title":"A pragmatic reevaluation of the efficacy of nonhuman primate optogenetics for psychiatry.","authors":"Eliza Bliss-Moreau, Vincent D Costa, Mark G Baxter","doi":"10.1093/oons/kvac006","DOIUrl":null,"url":null,"abstract":"<p><p>Translational neuroscience is committed to generating discoveries in the laboratory that ultimately can improve human lives. Optogenetics has received considerable attention because of its demonstrated promise in rodent brains to manipulate cells and circuits. In a recent report, Tremblay <i>et al.</i> [28] introduce an open resource detailing optogenetic studies of the nonhuman primate (NHP) brain and make robust claims about the translatability of the technology. We propose that their quantitative (e.g. a 91% success rate) and theoretical claims are questionable because the data were analyzed at a level relevant to the rodent but not NHP brain. Injections were clustered within a few monkeys in a few studies in a few brain regions, and their definitions of success were not clearly relevant to human neuropsychiatric disease. A reanalysis of the data with a modified definition of success that included a behavioral and biological effect revealed a 62.5% success rate that was lower when considering only strong outcomes (53.1%). This calls into question the current efficacy of optogenetic techniques in the NHP brain and suggests that we are a long way from being able to leverage them in 'the service of patients with neurological or psychiatric conditions' as the Tremblay report claims.</p>","PeriodicalId":74386,"journal":{"name":"Oxford open neuroscience","volume":" ","pages":"kvac006"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939311/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oons/kvac006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Translational neuroscience is committed to generating discoveries in the laboratory that ultimately can improve human lives. Optogenetics has received considerable attention because of its demonstrated promise in rodent brains to manipulate cells and circuits. In a recent report, Tremblay et al. [28] introduce an open resource detailing optogenetic studies of the nonhuman primate (NHP) brain and make robust claims about the translatability of the technology. We propose that their quantitative (e.g. a 91% success rate) and theoretical claims are questionable because the data were analyzed at a level relevant to the rodent but not NHP brain. Injections were clustered within a few monkeys in a few studies in a few brain regions, and their definitions of success were not clearly relevant to human neuropsychiatric disease. A reanalysis of the data with a modified definition of success that included a behavioral and biological effect revealed a 62.5% success rate that was lower when considering only strong outcomes (53.1%). This calls into question the current efficacy of optogenetic techniques in the NHP brain and suggests that we are a long way from being able to leverage them in 'the service of patients with neurological or psychiatric conditions' as the Tremblay report claims.