The NOAA Weather Prediction Center’s Use and Evaluation of Experimental Warn-on-Forecast System Guidance

IF 0.8 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Operational Meteorology Pub Date : 2023-09-07 DOI:10.15191/nwajom.2023.1107
Katie A. Wilson, N. Yussouf, P. Skinner, K. Knopfmeier, B. Matilla, P. Heinselman, Andrew Orrison, Richard Otto, Michael Erickson
{"title":"The NOAA Weather Prediction Center’s Use and Evaluation of Experimental Warn-on-Forecast System Guidance","authors":"Katie A. Wilson, N. Yussouf, P. Skinner, K. Knopfmeier, B. Matilla, P. Heinselman, Andrew Orrison, Richard Otto, Michael Erickson","doi":"10.15191/nwajom.2023.1107","DOIUrl":null,"url":null,"abstract":"This study examines use of experimental Warn-on-Forecast System (WoFS) guidance for short-term flash flood prediction at the NOAA Weather Prediction Center’s Meteorological Watch (Metwatch) desk. The WoFS guidance provides storm-scale ensemble forecasts for individual thunderstorms out to six hours and has previously shown great promise in its predictive skill for heavy rainfall events. Its operational utility was examined during 2019 and 2020 in a formal collaboration between Warn-on-Forecast scientists and Metwatch meteorologists. During that time, Metwatch meteorologists integrated real-time WoFS guidance into their Mesoscale Precipitation Discussion forecast processes and provided evaluations via a post-event survey. The survey queried impacts of WoFS guidance on their situational awareness, workload, and confidence, and Metwatch meteorologists also reported subjective assessments of model performance. Survey results highlighted the importance of viewing consistency in WoFS guidance across runs and agreement between WoFS guidance with conceptual models, other numerical weather prediction guidance, and observations. The use of WoFS tended to either maintain or slightly increase Metwatch meteorologists’ workload, while also increasing their confidence (notably for events perceived as better predicted). Of the different forecast attributes evaluated, Metwatch meteorologists reported convective mode as the attribute best predicted by WoFS. Use of WoFS guidance supported Mesoscale Precipitation Discussion decision making, including the placement and spatial extent of the product and the level of specificity provided about the related flash flood threat(s).","PeriodicalId":44039,"journal":{"name":"Journal of Operational Meteorology","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operational Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15191/nwajom.2023.1107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines use of experimental Warn-on-Forecast System (WoFS) guidance for short-term flash flood prediction at the NOAA Weather Prediction Center’s Meteorological Watch (Metwatch) desk. The WoFS guidance provides storm-scale ensemble forecasts for individual thunderstorms out to six hours and has previously shown great promise in its predictive skill for heavy rainfall events. Its operational utility was examined during 2019 and 2020 in a formal collaboration between Warn-on-Forecast scientists and Metwatch meteorologists. During that time, Metwatch meteorologists integrated real-time WoFS guidance into their Mesoscale Precipitation Discussion forecast processes and provided evaluations via a post-event survey. The survey queried impacts of WoFS guidance on their situational awareness, workload, and confidence, and Metwatch meteorologists also reported subjective assessments of model performance. Survey results highlighted the importance of viewing consistency in WoFS guidance across runs and agreement between WoFS guidance with conceptual models, other numerical weather prediction guidance, and observations. The use of WoFS tended to either maintain or slightly increase Metwatch meteorologists’ workload, while also increasing their confidence (notably for events perceived as better predicted). Of the different forecast attributes evaluated, Metwatch meteorologists reported convective mode as the attribute best predicted by WoFS. Use of WoFS guidance supported Mesoscale Precipitation Discussion decision making, including the placement and spatial extent of the product and the level of specificity provided about the related flash flood threat(s).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美国国家海洋和大气管理局天气预报中心对试验性预报预警系统指导的使用和评价
这项研究考察了NOAA天气预报中心气象观测台(Metwatch)对短期山洪预测的实验性预警系统(WoFS)指南的使用情况。WoFS指南为6小时内的个别雷暴提供了风暴级综合预报,此前在强降雨事件的预测技巧方面表现出了巨大的前景。在2019年和2020年期间,Warn on Forecast科学家和Metwatch气象学家的正式合作对其运行效用进行了检查。在此期间,Metwatch气象学家将实时WoFS指南纳入了他们的中尺度降水讨论预测过程,并通过事后调查提供了评估。该调查询问了WoFS指导对他们的态势感知、工作量和信心的影响,Metwatch气象学家也报告了对模型性能的主观评估。调查结果强调了WoFS指南在各次运行中观察一致性的重要性,以及WoFS指南与概念模型、其他数值天气预测指南和观测之间的一致性。WoFS的使用往往会维持或略微增加Metwatch气象学家的工作量,同时也会增加他们的信心(尤其是对于被认为预测更好的事件)。Metwatch气象学家报告称,在评估的不同预测属性中,对流模式是WoFS预测的最佳属性。WoFS指南的使用支持中尺度降水讨论决策,包括产品的位置和空间范围,以及相关山洪威胁的特异性水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Operational Meteorology
Journal of Operational Meteorology METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
2.40
自引率
0.00%
发文量
4
期刊最新文献
A Tale of Two Hazards: Studying Broadcast Meteorologist Communication of Simultaneous Tornado and Flash Flood (TORFF) Events A Change in the Weather: Understanding Public Usage of Weather Apps Convection Initiation Forecasting Using Synthetic Satellite Imagery from the Warn-on-Forecast System Interpreting Warn-on-Forecast System Guidance, Part I: Review of Probabilistic Guidance Concepts, Product Design, and Best Practices End-User Threat Perception: Building Confidence to Make Decisions Ahead of Severe Weather
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1