Assessing the composition of fragmented agglutinated foraminiferal assemblages in ancient sediments: comparison of counting and area-based methods in Famennian samples (Late Devonian)
C. Girard, A. Dufour, Anne‐Lise Charruault, S. Renaud
{"title":"Assessing the composition of fragmented agglutinated foraminiferal assemblages in ancient sediments: comparison of counting and area-based methods in Famennian samples (Late Devonian)","authors":"C. Girard, A. Dufour, Anne‐Lise Charruault, S. Renaud","doi":"10.5194/JM-37-87-2018","DOIUrl":null,"url":null,"abstract":"Abstract. Benthic foraminifera have been used as proxies for various paleoenvironmental variables such as food availability, carbon flux from surface waters, microhabitats, and indirectly water depth. Estimating assemblage composition based on morphotypes, as opposed to genus- or species-level identification, potentially loses important ecological information but opens the way to the study of ancient time periods. However, the ability to accurately constrain benthic foraminiferal assemblages has been questioned when the most abundant foraminifera are fragile agglutinated forms, particularly prone to fragmentation. Here we test an alternate method for accurately estimating the composition of fragmented assemblages. The cumulated area per morphotype method is assessed, i.e., the sum of the area of all tests or fragments of a given morphotype in a sample. The percentage of each morphotype is calculated as a portion of the total cumulated area. Percentages of different morphotypes based on counting and cumulated area methods are compared one by one and analyzed using principal component analyses, a co-inertia analysis, and Shannon diversity indices. Morphotype percentages are further compared to an estimate of water depth based on microfacies description. Percentages of the morphotypes are not related to water depth. In all cases, counting and cumulated area methods deliver highly similar results, suggesting that the less time-consuming traditional counting method may provide robust estimates of assemblages. The size of each morphotype may deliver paleobiological information, for instance regarding biomass, but should be considered carefully due to the pervasive issue of fragmentation.","PeriodicalId":54786,"journal":{"name":"Journal of Micropalaeontology","volume":"37 1","pages":"87-95"},"PeriodicalIF":4.1000,"publicationDate":"2018-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micropalaeontology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/JM-37-87-2018","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. Benthic foraminifera have been used as proxies for various paleoenvironmental variables such as food availability, carbon flux from surface waters, microhabitats, and indirectly water depth. Estimating assemblage composition based on morphotypes, as opposed to genus- or species-level identification, potentially loses important ecological information but opens the way to the study of ancient time periods. However, the ability to accurately constrain benthic foraminiferal assemblages has been questioned when the most abundant foraminifera are fragile agglutinated forms, particularly prone to fragmentation. Here we test an alternate method for accurately estimating the composition of fragmented assemblages. The cumulated area per morphotype method is assessed, i.e., the sum of the area of all tests or fragments of a given morphotype in a sample. The percentage of each morphotype is calculated as a portion of the total cumulated area. Percentages of different morphotypes based on counting and cumulated area methods are compared one by one and analyzed using principal component analyses, a co-inertia analysis, and Shannon diversity indices. Morphotype percentages are further compared to an estimate of water depth based on microfacies description. Percentages of the morphotypes are not related to water depth. In all cases, counting and cumulated area methods deliver highly similar results, suggesting that the less time-consuming traditional counting method may provide robust estimates of assemblages. The size of each morphotype may deliver paleobiological information, for instance regarding biomass, but should be considered carefully due to the pervasive issue of fragmentation.
期刊介绍:
The Journal of Micropalaeontology (JM) is an established international journal covering all aspects of microfossils and their application to both applied studies and basic research. In particular we welcome submissions relating to microfossils and their application to palaeoceanography, palaeoclimatology, palaeobiology, evolution, taxonomy, environmental change and molecular phylogeny.