R. D. de Souza, Raquel A. C. Leão, Barbara Maia, M. Gomez
{"title":"Continuous-flow biocatalysed kinetic resolution of 4-fluorophenyl-furan-2-yl methanol","authors":"R. D. de Souza, Raquel A. C. Leão, Barbara Maia, M. Gomez","doi":"10.1080/10242422.2022.2094258","DOIUrl":null,"url":null,"abstract":"Abstract Enantiomerically pure secondary alcohols are useful in the synthesis of several natural products and as active pharmaceutical intermediates (API). Due to the high demand for these chiral compounds, much progress has been made in the areas of asymmetric synthesis and catalysis. In this context, biocatalysis together with continuous flow technology can be a valuable tool for more versatile and sustainable methods, with lower cost, greater stereoselectivity and less environmental impact. This work aims to obtain an enantiomerically pure alcohol of industrial interest, (4 Fluorophenyl) (furan-2-yl) methanol (3), by performing a kinetic resolution using immobilized Candida antarctica lipase B (Novozyme 435, N435) under continuous-flow conditions. Initial study was carried out to optimize batch reaction conditions. The best results were obtained using isooctane as solvent, 37.7 mg of N435 and three equivalents of isopropenyl acetate as acyl donor at 60 °C for 24 h. Under these conditions, a conversion of 49% and 91 of enantiomeric ratio was obtained. Optimized batch conditions were translated to the continuous flow reactor leading to the desired product in 30 min of residence time, 47% conversion and an enantiomeric ratio of 61.","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":"41 1","pages":"367 - 373"},"PeriodicalIF":1.4000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and Biotransformation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10242422.2022.2094258","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Enantiomerically pure secondary alcohols are useful in the synthesis of several natural products and as active pharmaceutical intermediates (API). Due to the high demand for these chiral compounds, much progress has been made in the areas of asymmetric synthesis and catalysis. In this context, biocatalysis together with continuous flow technology can be a valuable tool for more versatile and sustainable methods, with lower cost, greater stereoselectivity and less environmental impact. This work aims to obtain an enantiomerically pure alcohol of industrial interest, (4 Fluorophenyl) (furan-2-yl) methanol (3), by performing a kinetic resolution using immobilized Candida antarctica lipase B (Novozyme 435, N435) under continuous-flow conditions. Initial study was carried out to optimize batch reaction conditions. The best results were obtained using isooctane as solvent, 37.7 mg of N435 and three equivalents of isopropenyl acetate as acyl donor at 60 °C for 24 h. Under these conditions, a conversion of 49% and 91 of enantiomeric ratio was obtained. Optimized batch conditions were translated to the continuous flow reactor leading to the desired product in 30 min of residence time, 47% conversion and an enantiomeric ratio of 61.
期刊介绍:
Biocatalysis and Biotransformation publishes high quality research on the application of biological catalysts for the synthesis, interconversion or degradation of chemical species.
Papers are published in the areas of:
Mechanistic principles
Kinetics and thermodynamics of biocatalytic processes
Chemical or genetic modification of biocatalysts
Developments in biocatalyst''s immobilization
Activity and stability of biocatalysts in non-aqueous and multi-phasic environments, including the design of large scale biocatalytic processes
Biomimetic systems
Environmental applications of biocatalysis
Metabolic engineering
Types of articles published are; full-length original research articles, reviews, short communications on the application of biotransformations, and preliminary reports of novel catalytic activities.