{"title":"A cyclic self-learning Chinese word segmentation for the geoscience domain","authors":"Qinjun Qiu, Zhong Xie, Liang Wu","doi":"10.1139/GEOMAT-2018-0007","DOIUrl":null,"url":null,"abstract":"Unlike English and other western languages, Chinese does not delimit words using white-spaces. Chinese Word Segmentation (CWS) is the crucial first step towards natural language processing. However, for the geoscience subject domain, the CWS problem remains unresolved with many challenges. Although traditional methods can be used to process geoscience documents, they lack the domain knowledge for massive geoscience documents. Considering the above challenges, this motivated us to build a segmenter specifically for the geoscience domain. Currently, most of the state-of-the-art methods for Chinese word segmentation are based on supervised learning, whose features are mostly extracted from a local context. In this paper, we proposed a framework for sequence learning by incorporating cyclic self-learning corpus training. Following this framework, we build the GeoSegmenter based on the Bi-directional Long Short-Term Memory (Bi-LSTM) network model to perform Chinese word segmentation. It can gain a great advantage through iterations of the training data. Empirical experimental results on geoscience documents and benchmark datasets showed that geological documents can be identified, and it can also recognize the generic documents.","PeriodicalId":35938,"journal":{"name":"Geomatica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/GEOMAT-2018-0007","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/GEOMAT-2018-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 19
Abstract
Unlike English and other western languages, Chinese does not delimit words using white-spaces. Chinese Word Segmentation (CWS) is the crucial first step towards natural language processing. However, for the geoscience subject domain, the CWS problem remains unresolved with many challenges. Although traditional methods can be used to process geoscience documents, they lack the domain knowledge for massive geoscience documents. Considering the above challenges, this motivated us to build a segmenter specifically for the geoscience domain. Currently, most of the state-of-the-art methods for Chinese word segmentation are based on supervised learning, whose features are mostly extracted from a local context. In this paper, we proposed a framework for sequence learning by incorporating cyclic self-learning corpus training. Following this framework, we build the GeoSegmenter based on the Bi-directional Long Short-Term Memory (Bi-LSTM) network model to perform Chinese word segmentation. It can gain a great advantage through iterations of the training data. Empirical experimental results on geoscience documents and benchmark datasets showed that geological documents can be identified, and it can also recognize the generic documents.
GeomaticaSocial Sciences-Geography, Planning and Development
CiteScore
1.50
自引率
0.00%
发文量
7
期刊介绍:
Geomatica (formerly CISM Journal ACSGC), is the official quarterly publication of the Canadian Institute of Geomatics. It is the oldest surveying and mapping publication in Canada and was first published in 1922 as the Journal of the Dominion Land Surveyors’ Association. Geomatica is dedicated to the dissemination of information on technical advances in the geomatics sciences. The internationally respected publication contains special features, notices of conferences, calendar of event, articles on personalities, review of current books, industry news and new products, all of which keep the publication lively and informative.