PDE-based hyperbolic-parabolic model for image denoising with forward-backward diffusivity

IF 1.1 Q2 MATHEMATICS, APPLIED Computational Methods for Differential Equations Pub Date : 2021-01-02 DOI:10.22034/CMDE.2020.37139.1646
Santosh Kumar, Khursheed Alam
{"title":"PDE-based hyperbolic-parabolic model for image denoising with forward-backward diffusivity","authors":"Santosh Kumar, Khursheed Alam","doi":"10.22034/CMDE.2020.37139.1646","DOIUrl":null,"url":null,"abstract":"In the present study, we propose an effective nonlinear anisotropic diffusion-based hyperbolic parabolic model for image denoising and edge detection. The hyperbolic-parabolic model employs a second-order PDEs and have a second-time derivative to time t. This approach is very effective to preserve sharper edges and better-denoised images of noisy images. Our model is well-posed and it has a unique weak solution under certain conditions, which is obtained by using an iterative finite difference explicit scheme. The results are obtained in terms of peak signal to noise ratio (PSNR) as a metric, using an explicit scheme with forward-backward diffusivities.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.37139.1646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, we propose an effective nonlinear anisotropic diffusion-based hyperbolic parabolic model for image denoising and edge detection. The hyperbolic-parabolic model employs a second-order PDEs and have a second-time derivative to time t. This approach is very effective to preserve sharper edges and better-denoised images of noisy images. Our model is well-posed and it has a unique weak solution under certain conditions, which is obtained by using an iterative finite difference explicit scheme. The results are obtained in terms of peak signal to noise ratio (PSNR) as a metric, using an explicit scheme with forward-backward diffusivities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PDE的双曲-抛物型前向扩散图像去噪模型
在本研究中,我们提出了一种有效的基于非线性各向异性扩散的双曲抛物面模型,用于图像去噪和边缘检测。双曲-抛物型模型采用二阶偏微分方程,并具有对时间t的二阶时间导数。这种方法对于保留噪声图像的更清晰的边缘和更好的去噪图像非常有效。我们的模型是适定的,并且在某些条件下具有唯一的弱解,这是通过使用迭代有限差分显式格式获得的。使用具有前向-后向扩散率的显式方案,以峰值信噪比(PSNR)作为度量来获得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
期刊最新文献
Two explicit and implicit finite difference schemes for time fractional Riesz space diffusion equation An effective technique for the conformable space-time fractional cubic-quartic nonlinear Schrodinger equation with different laws of nonlinearity A Study on Homotopy Analysis Method and Clique Polynomial Method Hybrid shrinking projection extragradient-like algorithms for equilibrium and fixed point problems A numerical solution of two-dimensional hyperbolic telegraph equation based on moving least square meshless method and radial basis functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1