C. Caudill, G. Osinski, L. Tornabene, F. Longstaffe, D. Mccarty, H. Sapers
{"title":"Pre- and syn-impact formation of clay minerals at the Ries impact structure, Germany: Implications for clay minerals on Mars","authors":"C. Caudill, G. Osinski, L. Tornabene, F. Longstaffe, D. Mccarty, H. Sapers","doi":"10.1130/b36699.1","DOIUrl":null,"url":null,"abstract":"The presence of extensive clay minerals in the ancient Noachian terrains of Mars is often used to invoke past climatic conditions that were warmer and supported surface-stable liquid water. These clay-rich regions are also heavily cratered, leading to the possibility of a causal relationship. The aim of this study is to better understand the impact excavation and generation of clays and whether there are any mineralogical or geochemical indicators that could differentiate between these two origins, both on Earth and, by analogy, Mars. Here, we present a detailed field and laboratory investigation of the composition, texture, and setting of clay minerals in impactites at the well-preserved Ries impact structure, Germany. Authigenic impactite (syn- and post-impact) clay minerals in impact melt-bearing breccia deposits are compared with sedimentary-derived clay mineral-bearing units preserved from the time of the impact event. Our findings indicate: (1) impact-generated deposits comprise compositionally diverse, Al-dominant smectitic clay minerals that could have formed without appreciable exogenous volatiles through a combination of autometamorphism, hydrothermal alteration, and devitrification; and (2) the pre-impact sedimentary clay mineral assemblages were similar in composition to those in the impact-generated deposits such that only detailed, successive laboratory treatments and analyses could discern the two sample types. NASA’s Perseverance Mars rover mission is presently investigating its first science campaign and has identified secondary alteration products, including possible clay minerals. Our study suggests that the rover may explore impact-generated clay minerals in situ, though their provenance might only be determined from analysis of the returned samples in Earth laboratories.","PeriodicalId":55104,"journal":{"name":"Geological Society of America Bulletin","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Society of America Bulletin","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/b36699.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of extensive clay minerals in the ancient Noachian terrains of Mars is often used to invoke past climatic conditions that were warmer and supported surface-stable liquid water. These clay-rich regions are also heavily cratered, leading to the possibility of a causal relationship. The aim of this study is to better understand the impact excavation and generation of clays and whether there are any mineralogical or geochemical indicators that could differentiate between these two origins, both on Earth and, by analogy, Mars. Here, we present a detailed field and laboratory investigation of the composition, texture, and setting of clay minerals in impactites at the well-preserved Ries impact structure, Germany. Authigenic impactite (syn- and post-impact) clay minerals in impact melt-bearing breccia deposits are compared with sedimentary-derived clay mineral-bearing units preserved from the time of the impact event. Our findings indicate: (1) impact-generated deposits comprise compositionally diverse, Al-dominant smectitic clay minerals that could have formed without appreciable exogenous volatiles through a combination of autometamorphism, hydrothermal alteration, and devitrification; and (2) the pre-impact sedimentary clay mineral assemblages were similar in composition to those in the impact-generated deposits such that only detailed, successive laboratory treatments and analyses could discern the two sample types. NASA’s Perseverance Mars rover mission is presently investigating its first science campaign and has identified secondary alteration products, including possible clay minerals. Our study suggests that the rover may explore impact-generated clay minerals in situ, though their provenance might only be determined from analysis of the returned samples in Earth laboratories.
期刊介绍:
The GSA Bulletin is the Society''s premier scholarly journal, published continuously since 1890. Its first editor was William John (WJ) McGee, who was responsible for establishing much of its original style and format. Fully refereed, each bimonthly issue includes 16-20 papers focusing on the most definitive, timely, and classic-style research in all earth-science disciplines. The Bulletin welcomes most contributions that are data-rich, mature studies of broad interest (i.e., of interest to more than one sub-discipline of earth science) and of lasting, archival quality. These include (but are not limited to) studies related to tectonics, structural geology, geochemistry, geophysics, hydrogeology, marine geology, paleoclimatology, planetary geology, quaternary geology/geomorphology, sedimentary geology, stratigraphy, and volcanology. The journal is committed to further developing both the scope of its content and its international profile so that it publishes the most current earth science research that will be of wide interest to geoscientists.